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Chapter 1

Introduction

1.1 Introduction

l c goal of the research reported in this thesis is to model the pcrfrinance or the Concert

Multiprocessor 1A21 in order to answer the following questions:

1. What is the performance of the system as designed and built with respct to sonic metric?

2. Why is the performance as it is? What fctors influence the perforinance. what is die sensi-

tivity or the performance to thes factors, and what are the limitations of the systcm design?

3. I low can the performance he improved and where should the design be modificd to achieve

this iuprovcnieet? What are the critical sections and bottlenecks in the design?

An answer to the first question satisfies a natural curiosity: an answer to the second gives

users ideas how to structurc programs and applications to achieve the best possible performance of

the Concert system: and finally, an answer to the third indicates how to achieve better perfor-
mancc in future designs. Another outcome of the work dcciibed herein is that it provides a start-

ing point fbr hitture modeling effi)rts. The experience and knowledge gained through this research

can )e used to guide the development and application% of higher level and/or inore complex

models.

The perfonnance metric used in this research is the throughput of the system. This metric is

simple and yet represents the basic goal of multiprocessor systems. 1owever, throughptt is a

rather cnide metric to use when comparing the performance of' difTerent systems because struc-
tUlal and organi/ational difkri'cnces often cause the definiticii of throughput to differ. For-

tunatcly. the main use of throughlpt in this thesis is to gauge the change in peirfirmance due to

variations in the paraimeters of the system or due to :nall modific;ations of' the s~stcm.

'lIhrotughput is well ;uited for this kiad of study.

V. % % % % % %
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I he system is modeled at the memory access level and thus throughput in this case is the

average number o1" m'ctory accesses per unit ltle. I'ach processor is asrnmed to spend most (it' its

lime accessing its associated Io.ki memory. (Orgai,itation of the systemn will be dis5Cls5ed in detail

in the next chapter.) The processor miodel employed is die simpiest imaginable in such a case: die

processor spends some time perforniing local processing afler which it makes a non-local memory

Xce; (for which it may have to wait for bus mastership) and then resumes local processing. "be

operation of each procssior is assumed to he independent of that of all other processors. ' he rea-

sons for the memory access modeling level, the simple processor model, and the assumption of

indcpenidcnt processors, are the same: at this point in time not enough is known about the

languages, programming models, programs, and applications to obtain more detailed models.

Furthermore, the Concert system is designed to be a testhed for the examination of many dif-

-rept mu itiproc.ssor ideas. The common denominator of all Concert applications is the system

itlsl and that is; where this research is fixc:u.d. 'ITe basic premise of this research is to start with

sone very simple models, develop them fully, evaluate them, and then determine how de models

can he improved. Complexity is always easy to add to models, sonietimes to the point that they

become unwieldy, hut it is morc dillicult mo add complexity in such a way that keeps the models

simple but accurate. Thus this thesis should be considered as the first step in an iterative cycle to J

obtain models incorporating additiolnal features such as processol dependencies. langtage issues,

and programming models.

IBecause of* [ie size and complexity of the Concert MultiproceSsor, direct modeling or" die

system - evei with the simple procc-sor model - would be a formidable tas,. The approach taken

in the sequel is to decompo;e the system into sabsystcms along the lines of the system's natural

hierarchies. Flkch subsystem is analyzed in detail and then all the subsystem models are integrated

to determine the performance of the total system, Analytical models are used for each subsystem. '

The Functional equations associated with analytical models allow easy prediction and quick evalua-

tion of the effect of various changes in the model parameters. In short, they allow a lot ofground -

to be covered in a structured manner and this makes them ideally suited to the lirst step or the

iterative cycle described earlier.

Simulation is emplo)ed in this thesis in a tiw instances where the analytical models become

intractable or unmanageable. H however, the main use of simulation is to determine the accuracy of

the integrated models. ','
-. ,V,(

The research described herein started when the author joined the Concert Project just alter

construction had begun. l'hus this work in no way affected de design of the system as desciibed ' "*

in tie next chapter and in Anderson 1A21. The optinium time to begin modeling is during the

design stage. Unfortunately only tie most rudimentary (and flawed i ) simulaitions were performed

' hi his sirnulatio of the Ringhts ,rbicr. Andcm'oi cieeacd a qucic of rctpies for each slice (dlined in -"c-

lion 1.2) and icrnm ai cd the si n V hen ii Iiw (IjL'ucL V11ll wit I lowcc r, If n quCue C lieCd i d1 at least

% % % %,-'.-o,-v.-.-'~ N X --- ""-- .'." ."." ."- ..--- .----.
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-it that dive. Although conducled afler the design slage. this research is still extremely usfl in

answering the three basic questions posed earlier.

Ibis desis is organized into fbur chapter% and each chapter is divided into sections. ThC

next section in this first chapter describes the Concert Multiprocessor. l'hc section after that

presents more details on the modeling level and modeling strategy. 'The factors considered in this

study and the assumptiOns made arc discussed in detail. The final two sections in this chapter

briefly discuss previous work in this area and preview the following chapters.

J!.-

.' ...

A

one qucue was still nonempy the simulilatioii still rani and still collected statistis with null rcquesls (i e the ab-
sence of a requet) gencracd for each slice with an crtpl)y queuc lhub the mmislics were biased by the %trcam

of null rqucls when a quceue emptied.

% %~ % %. %v? % * 0 %%Z
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1.2 lle Concert Multiproce.sort

Concert is a tightly-coupled. shared memory Muhiprocessor. It consists of multiple proces-

sors, each executing portions of code, communicating through shared memory to cooperate on the

solution of a large task (or tasks). It is classified as a multiple instruction strcam, multiple data

stream (MIMI)) computer [FI].

'Ihe Concert Multiprocessor consists of a hierarchy of time-shared (i.e. circuit-switched)

buses. At the top level, eight slices are interconnected by bus segments as shown in Figure 1.1.

Figure LI: Top level view of Concert

Circuitry within each slice connects the two adjacent bus scgmcnts cither to different internal slice

resources or to each other so that all internal slice ,csources arc hypa,,.ed. An electrical connection

can be established from a resource within one slice - the source - to a resource within a dif1'erent

slice - the destination - by an appropriate connection of the bus segments within the source and

destination slices and by joining the IMs segments together in all slices bctween the source and

destination. IFach bus segment is bidirectional, thus source and destination slices may be connected

by a path in either the clockwise or the counterclockwisc directions. More than one som-cte-

destination connection can he supported simultaneously provided that 1) there is a contiguous con-

nection of scgnets from each source to its destination, and 2) each bus segment and each slice

resource is allocated to at most one Nource-destination connection. Various simtiltaneous connec-

tions are depicted in Figure 1.2.

,,

t Only the details of the deign which are fell to be relevant to the modeling effort in the .quel arc discumed -

here. See Anderson IA21 for more comptlec information.

%
be o I e
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Figure 1.2: An example of simultaneous connections on Ringhus

. , ,

Note that a maximum of eight simultlaneous connections can he supported (e.g. if each slice and its V

immediate clockwise neighhour comprise a s)urce-dcstination pair). Once a connection is csta- ,

hlished from sourcc to destination, that connection is maintained and all the resources involved in

that connection remain allocatcd to only that connection until the source slice no longer requires

the connection. A central arbiter, shown in Figure 1.1, controls de allocation and connection of

ie hus segments. lic ring of bus segments shown in Figurcs 1.1 and 1.2 is callcd the Ringhus.

I'Ach slice consists of up to eight process r-local memory pairs (one local memory block per

processor is the usual, but not necessary. conliguration), a global memory block, a time-shared bus

callcd the Multibus, and aI Ringhus Interface Board (RIB). [Ach processor communicates with its '.,

local mcmory over a dedicated bus called the high speed bus (HSII). rhis bis is private to (he p(i)-

cessor and independent of* the Multibus and other high speed buses. All the processors and

memories (both local and global) are also connected to the Multibus. 'The Multibus, global %

memory (via a HSB), and the Ringbus segments adjacent to that slice connect to the RIll Various ,

access paths and circuitry inside the RIB (described in section 1.2.2) allow these items to be inter-

connected. The resources of a slice that arc available for intcrslice communication can be divided

into two mutually exclusive groups: source resources and destination resources. The processors -.

connected to the Multibus are the only source rcsources. The destination res)urces consist of the."

global memory and some global registers (which are inside the RIB).

Only tirce types of communication, all originated by processors, can occur in the Concert

Multiprocessor.1 A processor can communicate - i.e. access - its local memory via the I ISli. the

local memory of other processors on its slice and the global memory of its slice via the Multihus,

and die global memory of other slices (and the global registers of its slice) via the Multibus and

t ('oniniunication can also be ori'inaled h other poloitial Multibus niastcrs.such as I/O dcoic s IHowccr, %U

these (Olier I)pecrial masicis c-wrolially, I.h:te like proccor.

s : V'c
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Ringbus. We tcrin these types oF accesses I ISB, Multibus. and Ringbus accesses respectively. Note

that a processor can iot communicate directly with othcr proccs; ors or the local memory of pro-

CCSSol.S on other slices, such comilnication must occlr dhrough tie local or global memory. All

bus transactions in Concert are single memory transaictions - read, write, or rcad-modify-writc.

Succes,ive accesses require cstablishmcnt of direct bus connections from source processor to desti-

nation memory for each access. Thus there is no store and forward mechanism or anything of this

kind on de Ringhus or elsewhere.

The structure of a four slice version of die Concert Multiprocessor is illustrated in Figure 1.3.

This Figure shows all major interconnections within Concert and illustrates some representative

accesses from each oF the three types of accesses.

"p
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p

p

I ISII

IRigbus segment

G.;

______ 4inghu. R

I ISI~ibuc cic-em

P dcnoici proccessor

L .M. denotes local mnrory

G.M. denotes global nicmiory a

Figure 1.3: The Concert M'ultiprocessor (only four slices shown)

The NiultibuIS (iniClUding high speed buses. pr~cessors and inem~Orics), RIBI, and arbiter arc

flow discu~ssed in more detail.

% %~
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1.2.1 Multibus

The Multibus is an IFI:. 796 standard inulti-master bus. An additional bus. %hich nuns

parallel to this 796 bus. is physically divided into shorter independent bus segments each of which

serves as the high speed bus fir a processor. 'Ihe processors and memories are commercially

available dual-ported boards (Microbar Inc. products )1BC68K and l)B1R50 respectively) that each

have one Multibus and one I ISB port. As described carlicr the I ISB is private to a proccssor; thus

there is only one processor per I ISB. The processors are based on the Motorola MC68000

microprocessor.

When a memory access is initiated, a processor first attempts to access the desired location

on the IISB. If this allcmpt is successful, the memory access proceeds. If it is not successful, the

processor accesses the location via the Multihus. 'lius a piocessor accesses its ,own local memory

over its I ISII and the local mnemory ol other processors or global memory over the Multibus. ,"

Accesses on the I ISB take considerably less time then acceses on the Multibus due to the differ-

ences between the I ISI1 and Multibus protocols.

Contention for the mastership of the Multihus is resolved by a round-robin arbitration unit.

'Ihis unit takes a maximum of two Multibus clock cycles (10 Ml Iz clock) as pictured in Figure 1.4.

Srcquest latched rI-ucms Cranled

,~Q a.- :.*.:

GR"* [ --.

Multibus

dock "

Figure 1.4: Multibus arbitration signals

One cycle is required to latch the request liues and another is required for the arbitraiim and pro-

pagation delay. This arbitration unit grants possession of the bus to a processor for only as long as

it takes to complete a single memory access, which cannot exceed 16 bits. The 68000 can perform

byte (8 bit), word (16 bit), and long word (32 bit) operations. ILong word operations consist of-
%"N%,

two separate 16 bit accesses: thus a processor must gain control of the bus twice flor a long word .

access. Other processors may seize the bus between these two accesses. %

Contention also exists for local memories since a local memory can be addres'sed simtnltane-

ously over a processor's I lSIB amd over die Multibus. '[his contention is resolved by arbitration cir-

cuitry on the dual-ported memory boards.

%. ,i% % %
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When the Ril recogiizc i memory access on the Multihus in the Ringbls address space

(i.e. a Ringhus amc.cess). it decdes the destination slice flrm die address or" the ccs iiid sends a

request to the Ringhus arbiter for a connection between the Multibus of die source slice and the

destination slice. When the Ringhus arbiter grants the request, it directs sonie number of RIBs to

form a path between the source and destination and then it Icts the mcnory access at the source

slice proceed.

A diagram of the access paths within the Rill is shown in Figure 1.5. Arrows denote the

directionality of the paths and lines perpendicular to a path denote a switch which can he either

open or closed. *

couniterclockiwise ,,',

R ig s . gm cnm

SG.M.

Muliihus 
,k'.

Noie: glotal regimeus :-''

dc kwise %ithin RIB nrA %t.shw .:Ritngbus wgmnint '"""'.

Figure 1.5: Rill access paths -.,-,

Notic:e thait the Ringhus access patlhs are asymmetrical. Memry ,accsse:s enter the R~ighus

oil die .segmnirt to (lie clockwise direction oif the Sou~rce Rill an~d exit 1'l the IRinghlis' segmient to)"''

" .4 '

the colunterclockwise dirc.ltin of the deslinatioln Rill. This caulses the Ringhtus it) l ie biasved"..-

oward mcnlliory acce~sses inl the cloc:kwise direction airiitld (le IiirgluS. As dopicte'd in F+igure 1.6, " "

a menor), access to> it Iliglhb oit ing R111 in the clockwie direcion reqlliic% one, IRinghus egm ent•+"'

compared ito three for the neighbor~ring slice in the the counter clockwise direction. (Ib'is last"'""

access colid ,lso be made in de clckise direction. For a Ringbus with eight sgmnents. this .-,

would require vn segments.),.,

-~~~~~~, .4P0,' I? .''
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UNI.

tA

G.M.'

Acccs 
"

G.M. 5

Figure 1.6: Access paths to neighbouring R 111 
J!r

The asymmetrical acccvs pads clearly reduce the maximum number of accesses that can

occur imultaneously on de Ringbus if any of the acc ss s take place in dhe counter c lokwise ,',

direction. The dcsin ei of ie C.onc rt system felt that the asymmetrical access paths would sim- , i

plify t e Ringbus arbiter ( sce ction 5.2.2 in Anderson [A2). 
.

The same du ad-portcd m emory boards u sd for the oc al memories on the MultibLus a 1r used . ,

for the global m em ories. A s indicated in F igures 1.3 and 1.5. the NM u tib LIs port of ie g obal ,

memory connects directly to the to the Multibus of that slice. h I tSI p ort f the global mem ory

connects to ie Ringlus. As bfre arbitration circiii.v on die lol;,l immory bard handles

s i m l ta nlC O U S M ul t i b u s a n d in g b u s a c c ess s t o I h ~ i t b ar d . N t e t h a t ll a c c e s s e s t o g lo b a l ..'5%
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memory require somc portion or the Ringbus. except for accesscs to the global memory in the

same slice as the processor making the aLccs

There are also a small number of global registers Iocat,'d in the RIll (they arc not shown on

any of the Iigurcs) blr the pUrpose of various sundry activities such as resetting the slice, inter- e

rupting processors in the slice from a processor external to tie slice, enforcing read and/or write

protection on the slice's global memory, and some limited performance monitoring. 'Iiesc rcgis-

ters are acccsscd in the same manner as the global memory except that a slice cannot access its

global registers directly from the Multibus. All global register accesses require the Ringbus.

1.2.3 Ringbus Arbiter

The arbiter uses a rotating priority scheme to ensure that all requests eventually get granted.

If" the slices are numbered consecutively from 0 to S - 1. where S is the number of slices, then the

priority of slice i is pri(i) 7 (i - 1) rand S where n is the current top priorily slice. A request is

held at the top priority until it is granted at which time n is updatcd to the next slice in the coun-

terclockwise direction that has a pending request. A number of algorithms may he used to grant

any combination of lower priority requests that do not conflict with each other or with any granLs

(i.e. ncmory accesses) in progress. Thle particular algorithm used in this case grants a request only

it' it does not con!lic with any requests at higher priority levels or grants in progress. Oaly the

direction requiring tie snallest number orl Ringbus segments is considered for gr,,nting the

requests. In the case or a tic in the number of segments required in clockwise and counterclock-

wise directions, the clockwise direction is chosen.

'11wc arbitcr incorporates a clever design. The Ringhus segments required for each request

are determined from the destination of the request. Since requests are only granted in one direc-

tion as mentioned earlier, there is no ambiguity in determining which segments are required. FAch -

Ringbus segment is provisionally granted to a request. The request to which a particular segment . ,'

is granted is determined by the priority of the requests. When a request has been granted all the

segments that it requires, the rcquest is granted.

'

% . °
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Gramtin Slice 1

slie 1 rp eus New or

Request continuing Slime I

Slice I ID "

Grant in

Request
Destnado New or

SeSUDI continuing Slice I

SUNIm gran
Grant In SliceSI

Priorit p F reus

SN.a SePmen needed

SOGa Seaient grant

Slice I
New or

continuing EM Gat
Slice 1

-grant%

RN ENRO (Enable right segmnent)

Slice I ID -

3N Eal etsget

EN C" ENLO (Enable left sepment)

Destination
ENRSlice 8 ID Rt F4R* (Fniable right scgmcnt)

New or 3
continuing pENMO (Grant) Slice %8W

Slice 3 r

Figure 1.7: L~ogic diagram of arbiter
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A logic diagran of he arbiter is presented in Figure 1.7. "1e SN Rom determines the seg-

incnts iequired f)r each iequest. Fach of the SG Roms. one for each segment, determines the

request to which that scgment is granted. The SG RIoms automitiCally grant a segni'-nt to all

rcquests that do not require it. 'lbus the eight segment grant lines just need to hc ANI)ed to

determine if the request has all the required segments. To prevent a "request" from being

granted when there is in fact no request, the grant line is ANI)ed with de request line. Some

additional logic bypasses the SG Roms to prevent the interc)nnecti)n of the required segments

from being changed while a grant using them is still in progress.

-Rcqu0U eu/ Ltched / rne
. ,5

.ArbitnlcDlC cdc output-0
(rant Signal

RitghiisArbiter clok - -  ,',

Figure 1.8: Ringbus arbiter timing

'lhe arbitration time for this arbiter is between two and dree arbiter chck cycles. As indi-

cated in Figure 1.8, once the requests are latched into the arbiter, one cycle is reqtlired for the

arbitration and another cycle is required to decode and latch the grant lines.

',-.
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1.3 Modeling Details

1.3.1 Proce sor Model

We assume a simple probabilistic modcl for cach proces)r based on accesses to non-local

memory (i.e. those memory locations which a pr(x:ces)r can only accc-s via the Multibus). We

partition the operation of a processor into three phases: 1) processing. 2) waiting. and 3) access-

ing. (We add a fourth phase later.) 'lhe processing phase corresponds to the interval between the

complction of onie memory access via the Multibus and the request for the next memory access via .1 -

the Multihus. (A processor must request thc Multibus and be granted its use by the Multibus

arbitration circuitry before a memory access may proceed.) Only local (i.e. I ISlI) memory accesses

may occur during this interval. We consider the instructions for each processor to be stored

mainly in its local memory. Tits we regard the operation of a processor as consisting of periods

of' procescing (hence the name processing phase), where the processor is accessing instructions and ,,

data stored eniirely within its local memory, punctuated by accesses to global memory for data and

other instructions.

Ibc waiting phase corresponds to the interval between the generation of a Multibus request

and the initiation of the access corresponding to that request. A Multibhs memory access from ,.

one proccs,;or may have to wait for the completion of other Multibus acccsscs before it can bepin.

'he accessing phase corresponds to the interval during which a Muitibus access is in piogress by

that processor: it is the cnire di ration for which Ue prnce,, or maintains uninterrupted mastership

of the MNhltiius. These three ph:mse corrcpond to the peration of a prtces.or fron the point of , A

view of the Multibus.

The interval for which a processor is in the processing phase we call the processing time,

denoted by I,- the interval for which a proces)r is in the waiting phase we call the waiting time

for a memory request, denoted by i,,: and de interval for which a processor is in the accessing

phase we call the access time, denoted by I,. One cycle of a processor. consisting of these three

times, is depicted in Figure 1.9.

brocce, ilng time W iling lime A -(CC time

t* P

Figure 1.9: One cycle of a processor

More precise definitions of p, t,. i, In crms of Multibus signals are givcn in section 2 of'

Appendix A. The waiting time. 1,,. is defined Fo that it is always /cro when there is only one

% % % % %V,' ,_.,t . 2. . '.. _.- ''-- .-. - ,- - .-. ,- -..- • ...-....-.....*.. *.- -'. ... '*q . - n • % % , ='1q . . . . % q,% • . O% .% .
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processor on a Multihus. '1lie delay of the Multibus arbitration circuitry is included in the access

time.

We consider 1p, I,. and ia to be random variables. i, and i,, have given probability distri-

butions which serve as inputs to the processor model. The probability distribtion of t, which is

determined by the contention for use of the Multibus. is the output. Given that a processor gains

mastership of the Multibus for a memory access, we assume that the access requires use of the

Ringbus with probability 4,, in which case we call it a Ringbus access, and that it requires use of

only the Multibus with probability I -'. in which case we call it a Multihus access. Given that a .

Ringbus access occurs, we amsune that its destination is the global memory or a global register

connected to Ringbus slice i with probability pf/t. i =- (S/2--I). -, -- 1, 2, , or S/2.

'lhe number of slices is S and i denotes the position of a slice with respect to the one from which VWa

the access originates. Negative numbers indicate the countcrclockwise direction, positive numbers

indicate the clockwise direction around the Ringbus relative to the slice originating the access.

Thus i 7- 2 indicates the second slice along the Ringhus in the counterclockwise direction From

the slice originating the access and i 2 indicates the second slice in the clockwise direction. We

call the set of pRH the Ringhus destination probabilities. Since ill most applications, accesscs to

the global registers will be infrequent, we ignore accesses by a processor to Lhe global registers in

its own slice. We assunie that all Ringbus accesses have the same access time disrihution and that

all M,;ltibtis accesses havcv 0% samie acces;s time distributi( (which in general will ditler f'rnm that

for Ringbut accesses). 'lhe Ringhus access time distribution is an equivdent model of the entire

R ingbus from the perspective of the Multibus (we talk about this more in section 1.2.5): it includcs

any waiting time imposed oil a Ringbus access by the Ringbus arbiter.

We have just assumed that all Multibus accesses have the same distribution. We now exam-

ine this assumption in more detail. In the absence of traffic on the IISIi ports of the global

memory boards, all Multibus accesses would actually have the same access time distribution.

However, since the boards are dual-ported, traffic on one port of a memory board affects traffic

on the other port. Thus Milltibus accesses may have different access time distributions depending

on the mciemorv board accesscd and the traffic intensity on the board's tIS11 port. 'lere are two -

different cases to consider depending on the destination of a Multihis access.

Case 1: The destination is a local memory, in which case some pro:essor connects to the

!I11 port of the memory boaid. In this case the Multihus access time can be greatly affected by

the I IS traffic on the local memory board from the processor - compare Figures A.4 and A.5 in

Appendix A. ...

Case 2: The destination is a global memory. In this case the FISIB port may either be

unconnected ofr confleIcd to the RIB. A comparison of IFigures A.4 and A.6 reveals that [lie

acce"s time is essentially the .ite ti'r tlhese two choices of' I ISII connections.

J*J
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We conclude that if' the ma tkrity of Multibus accesses are to global memory, then the access

time distribution is essentially the same for every access as we assumed earlier. Finally, we note

that a conparison of Figures A.9 and A.10 in Appendix A reveals that Rijgbtus access times are

only slightly atllcted by the traflic intensity on the Multibus port of a global memory board.

We assume that reads and writes have the same a.ccss time distribution. 'Ihis assumption is

supported by the results in section 3.3 of Appendix A: for Multibus accesses, the access time distri-

bution for reads and writes differ insignificantly and for Ringhus accesses, the access time distribu-

tion for reads and writes differ significantly. Wc ignore rcad-modify-write accesses. since they usu-

ally occur infrequently compared to reads and writes. ('l1c effect of read-modi fy-writes can be

included by incorporating access times near that of read-modify-writes in the access time distribu-

tion for reads and writes.) We assume that byte and word acccsscs have the same access time dis-

tribution. This assumption is again supported by the results in section 3.3 of Appendix A.

Just as the traffic intensity on the I IS1 port of, a memory board affects the Multibus access

time of' that hoard, the traffic intensity on the Multibus port of a memory board affects thL IISH

access time of that board. Since the processing time distribution implicitly includcs the I ISl1 access

time of its associated local memory, the processing time distribution of a processor dcpends on the

traffic intensity on the Multibus port of its local memory. lowever, since the processing time dis-

tribution is an cxogenoiis input and possihly dificrent for each proccssor tallhough we assume i to _

be the same for each processor in Chapter 2 and 3). VC can simply accommodate any Sl1l depen-

dencies by using an appropriate processing time distribution. In addition. the argunent which we

presented above for the access time distribution %ill work to ;(time extent for the procesing time

distribution (we can't be sure of the extent since we haven't made any measurements of the efTect

of Multibus port traffic on the processing time distribution).

'ibhe processor model presented so far in illustrated in Figure 1.10. --€

- Multibus

Accc .Mng counter-

clockwse

Ringbus P I. '-

w~lifingacec%%

clockwise

PSJ,

iFigurc 1.10: Processor model
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Thc one remaining embellishment of the processor model concerns long word accesses. The

accers of a 32 bit long word involves two cOnscCutive word accc.ss on the 16 bit wide data paths

of Concert. I lowever. the two word accesses on the Multihus are not neccssa, ily conscutive Since

a processor do.es not maintain mastership of ie Multibus between them. After the first word ,0

access of a long word completes, a processor waits some amount of time, which we call the

recovery time, before requesting the Multibus for the second word access of the long word. Other

processors may scizc the Multibus in this time and cause the second word access to wait even if

the first word access did not wait. Since a long word access consists of word accesses, we can cer-

tainly incorporate long word accesses in the processor model as presented so filr-. I lowever, this

may not be a good model - especially if a processor generates a lot of long word accesses - since

the processing times in such a model are not correlated with the first word access of a long words

when in reality the processing times are strongly correlated with the first word access of long.%-, ,%,

words.

We add a fourth phase - recovery - to our processor model to create an alternate model for

long word accesses. In this model we assume given that a processor gains mastership of the Mul-

tibus for a memory access, the access represents tie first word of a long word access with prohabil- -,.

ity fl and a reguli byte or word acccss with probability I--13. Given that the access does

represen tihe first word of a long word access, the processor generates a request fir the second

word of the long word after a recovery time denloted by t, This second word access has the m;t-nc

destina ion - Multibus or Ringbis slice i - as tho fiist word access. Again, we assume thlt tr is a ,

randon variable with some ;iken probability distributioi,. A more precise definition of r il termis_

of Multibus signals is given in section 2 of Appendix A. This alternate processor model is illus-

trated in [:igre 1.11

%A%
'4

Figure 1. 11: Alternate processor model 6
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1.3.2 Major Assumptions

'l1c major assunptions which we make throughout this thesis arc:

1. Ihe random Nariablcs Ip and i4, Ior each processor are stationary (i.e. their probability distri-

butions are independent of time). We also assume that the probabilities fi. 4', and Pi Rt fo r

each processor arc independent of time.

2. Conccr is an ergodic system - i.e. long term time averages converge to the values computed

for stochastic steady state.

3. Fach processor model is entirely independent of all other processor models and everything

else. More precisely, all processing and access time random variables. ip and I. are stochasti-

cally independent of each other and everything else. Also, all other probabilities f3, 4,, and

pR l are stochastically independent of each other and everything else.

4. The overall model of Concert is in stotchaslic steady state.

The independence assumptions in 3 simplify the models. Various dependencies of the ran-

dom variables can be included in the models (as discussed in section 2.10.4) but doing so increases

the number of states and complexity of the models. lurthermorc it is not clear at the present time

what the dcpcndencies are and how significant they are. Certainly factors such as tlhe programs

run on the system, the language in which (he programs are ex)ressed. and the distribution of the

programs abow the system influence the nmibcr and magnitude of the dependencies, hut how

does one intelligently express then in a indol? l)caling widh such questions and the various

dependencies is beyond the scope of this thesis. Instead, we adopt a conservative approach: we

assume that there arc no dependencies and determine the performance as predicted by these sim-

ple models. Future research can be devoted to developing more detailed models to incorporate

additional factors. The performance predicted by the models with the independence assumptions

can be used to bounds the performance predicted by the same models with dependencies. IliTus

the independence assumptions allow simple models that yield bounds on the performance of more

complex models.

Ways to relax the assumptions in I and 3 are discussed in section 2.10 in relation to the Mul- ",'-.

tibus Model.

1.3.3 Factors ror Study '.''

The factors we stud) in this research arc:

1. The processing time distribution.

2. The Multibus access time distribuion. (The Ringbus access time distribution is an equivalent

model of the entire Ringhus from the perspective of a processor on a Multiblus and thus it is

dictated by the Ringbus. I lowever. We do consider it as a factor for study in conjunctioii with

2:.~~ ~ ~ ~ _... -- ' I %_.2
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z

the Multibus model ill section 2.9.) ,I.S%

3. The probability of a Ringbus access. ,, and the Ringhus desuitiaion probabilities 1/iit We

also consider the probability of a long wor'd access P3. when using our alternate prmKessor .0.

model.

4. 'lThe number of processors on a Multibus, i.e. in a slice.

5. The number of slices.

6. The Ringbus access paths.
I-=

7. The Ringbus arbitration algorithm. .

1.3.4 Overall Perrormaice Metric

We use throughput as the performance metric of the overall model. We regard the

throughput of a processor as tle number of Multibus and Ringhus accesses completed per unit ..

time. Thus the throughput oft a processor is equal to __ where iyc is the cycle timc given by

Iy+ 1,r 1  + ( 1 4')Iamb + "".b)'

t, denote. the mean waiting time per Multibus request fbr a byte, word, or first word af a long
word access and I, denotes the mean waiting time per Multibus request Ior the second word of a

long word access. linb and ,,b denote the mean access time fbr Multihus and I(inghus accesses
respectively. The total throughput ik thus _ where t.-, is die mean cycle ti e for pr,.-sr

i th emacceie r

•and P is the set of all processors.

1.3.5 )ecomposition and Integration .

We divide the overall Concert system into a number of subsystems: one for cach Multibus

and one for the Ringbus. Fach Multibus subsystem consists of all the processors, local memories,

and global memories connected to the Multihus. [he Ringbus subsystem consists of the Ringbus

arbiter and everything connected to the RIs except for the Multibus. This definition of the sub-

systems is illustrated in Figure 1.12.

.*'.6 .

°.6,'
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MMlibuiRigbu

Figure 1.12: Subsystem definitions

Note that thc global memnory modulc connected to each Rill is included in thc subsystem for thc

corresponding Multibus and in the subsystem for thc RingbuIS - We view it as being shared by the

two subsystcems. 'Ilitis ilicre are two points of* interaction between each Multibus su~bsystem and

the Ringhus sutbsystem: die Muhlibtis connect ion ito the RIBH and the glob~al incmory connected to

the R111. I lowecer, the interaictiorn through the -lobal rneitiory connected to the Rillis especially

weak. N'eastiremeints reported in sectiona 3.3 of Appcvidix A reveal that the access time distribu-

ti)ii ibr accesses via onie port of' the global inenorv conoected to tie RIill is hardly atTcted by%

heavy loading on the other port Wt the global memo,-). (Comipire ligures A.4 and A.6 and Fig-

tires A.9 and A.10.) We ignore the interaction bectween Mul]tihuis and Ringhus subsystems through

global memory in die rest of this thesis. The single remaining point of interaction between each

Multibus subsystem ajid the Ringhus subsystem rails on a natuiral hierarchical boundary and thus

represents a natural demarcation point between the subsystems.

Figure 1.13 gives an !bstract view of the overall system.
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.U.Niultibus I iuhibus -

'4

We can rcgard cach subsystem as a black box. lEach black box can be rceprcsentcd by an "''

cquivalent lumped modcl, just as a black box in an clcctrical circuit an he rcplaccd by its 'Thcvcnin '.

equivalent circuit. '[he 'l hcvenui equivalent :nodcl of' thc Multibus subsystem is a single proccssdr ,.,,-

model of' the sort described in setion 1.2.1. Thi'is single pro cs.,or represcnts thle characteristics of' , ,
the Ringbus accesses 1ron the entire Multihus subs ystcm, ~t the intcrval between the completion ".

of one acccss on the Multibus with a Ringbus destination and the start o the next access on the "."

Muiibus with, a Riugi-us destinati be called the RinMbus spacing. 'Ihen the proccssing time dis- "'

tribution of the single prolessor equivalent of the Multibus is equal to the pJ6ability distiiution

of the Ringbus spacing. We make no distinction between word and long word accesses or the,

Ringbus access spacing: thus we take , = c for the single processor. '[he probability of choosing

Ringbus destination i in the single processor model, which we denote by p fJeqr is equal to the p.

probability that a IRingbus access, in the Multibus subsystem is for" destination i. I.inally, we have ,_

4'= 1z for thle single processor equi,,alent. 'The access time distribution is given by the Ringbus -.•"%

model. '[he Thevenin equivalent model of the Ringbus subsystem is some access time distribution

for each Multibus-RIl connection. Tis access me distribution for a connection is the distrihtu- "..

tion of the me from the currience of a R inghus request to completion of that Iingbus access

for all lingbus requests on hat connection.
We decompose the overall model of Concert into Multihus and Ringbus models. As shown

in Iigure 1.14, 'l'hevenin equivalent models are used to represent the other models connected to a,

particular model. a.ssv 1 to. e afor, each M.,.lt, bus%-01 connecton. -, hi access -. i ditrbuio f t concto is t... ditr -

tin of... .t......, ,_.._... frn the occurenc of. .-,.t. ,..-b~ re ustt,-.leinof,.,.ng IC
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.wxylnsubsystem

Mullibuss

Ringhus Single "%
acces s timec proressor igu

distribution equivalent : :
Mutibus model of Multibus.-,

I

Figure 1.14: Decomposition into models""

Given so;(me Ringhus access distribution, die Multibus model can be analyzed. L~ikewise, .

given some pr(ocessing time distribution and Ringbus destination p~robabilities, die Ringbus model _

can be analyzed. I lowever, die solutions of these decomposed mnodels do not neces.i-ily

correspond to die solutions of the subsystems in the overall system since the models are depen-

denlL The Ringbus access time distribution is given by the Ringbus model, which depends on die

1
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model and some Ringbts access timc distribution. '1lhe we solvc the Multibus and Ringhus iN'

modcls to obtain a new Multibus single processor model and a new Ringhus access tirne distribu-

tion. We analyze the models again to obtain updated modells and repeal until the improvement on

successive iterations is sufficicntly small. We do not disuss the the existence and uniqueness

issues associated with integration. It should be clear later that in our case integration leads to a

unique solution.

We make a number of assumptions and approximations to simplify integrating the models:

1. We assume that the Multibus models are identical in every respect: each has the same

number of processors and all the processors are identical.

2. We assume that the Ringbus model is symmetrical with respect to each Multihus.

l'hesc two assumptions mean that only one Multibus model (and the IRinghus model) needs -

to be involved in the integration. "Z

3. We approximate the processing time distribution of the single processor model otf the Mul-

tibus by an exponential distribution.

4. We approximate the Ringbus access time distribution by an exponential distribution.

Tliese two approximations ea:e die analysis of the models. Since an exponenti;l distribution

is coipletely specified by its first moment, these two approximat.ions also considerably ease the

integration of die models, sin:e ihe integration now cffectivcly reduces to first niini n L ,matching

(i.e. we just have to determine the meian processing time of the single processor model or a NMul-

tibus and the mean Riingbus i'cccss time).

Of course, these assumptions and approximations limit die applicability nd accuracy of the

integration. The accuracy of the performance predictions obtained via integration ol the models is

assessed by comparison with simulations.

,'.,
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1.4 Previous Work

Single bus multiprocesors like die Multibus subsystem have been studied by many. The

basic qucueing system formulation of the Multibus modli in Chapter 2 has appcared and has been

studied in many guises. It appeared as a machine repairman model as early as 1935 1K21. With

the advent of Kleinrock's popular volume IK3]. the M/M/l//N mo)del of the basic queueing sys-

tern has become a classic. Jaiswals' 1il. or alternately Ienson and Cox's 1B21, solution of the

M/l)/I//N model is also well known. "lhe theory of product form queueing networks which we

apply is well known, although we utilize Kelly's powerful and elegant quasi-reversibility approach

(K I] to queueing networks rather than the more well known local balance I)CMI' approach fIIll.

We arc not aware of other studies dealing with our particular extensions to the basic queue-

ing system model of the Multibus. I lowever. the extensions are simple and the results we obtain

follow from straightforward application of product fonn queueing network theory, so others may

have derived similar results. "lhe specific recursive solution technique we discuss for the

I[/1"II/1//N model is, to the best of our knowledge, new, aldough Herzog, Woo, and Chandy

[H21 have already outlined the solution of general queueing systems by recursive methods.

The Ringbus subsystem, on the other hand, is a novel interconnection scheme which, to the

best of our knowledge, was not studied (or conceived) before Anderson [A2I. Anderson focused

on the design of a workable Ringbus: he only performed the most rudimentary simulations (see

footnote in section 1.1). We study the optimum performance obtainable with a lRingbus. We for-

niulate the Ringbus arbitration problem as a Markovian decision problem and treat it by the well

known techniques of I loward 1114) and Odoni f021.

The decomposition /integration approach to modeling Concert wi:s inspired by Courtois ICSI.

The techniques applied in this approach are standard.

%

o Pe0%

'p.



Introduction 41

1.5 Oveniew of Thesis

We study the Multihus model in detail in Chapter 2 and lay the foundation in section 2.9 for A

later integration with thc Rin-hus model. In Chapter 3 we study the Rtin-bus miodel. Wc concen-

trate mainly on die optimum pcrformance of the Ringbus and the arbitration algorithm which

achieves this performance. In Chapter 4 we integrate the Multibus and Ringbus models and make

a few performance predictions to demonstrate the integration technique. We compare these pred-

ictions to simulation results. In the remainder of Chapter 4, we present the results of computer

simulations of the overall Concert model.

%
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Chapter 2

Multibus Models

2.1 Introduction

In this chapter we study the Multibus subsystcm in detail. We use the piocessor model

described in section 1.3 to construct various increasingly complex models of the Multibus. We

assume. as mentioned in section 1.3.2, that all i)rtcsor models are stationary and independeiit.

To case analysis, we assume in addition that all processor models are identical in every respect.

llie extension to non-idcntical processors. discussed in section 2.10.1, is straightflorward but

increases the complexity of the analysis without neces'arily ccuntributing much insight.

When all processors are identical. the mean cycle time of a Irocc-esor, kft, is the same for

every processor. (This follows from symmetry arguments.) Thus the throughput of the Multibus is
Ngiven by where N is the number of processors and .,

ICYI

1, denotes the mean waiting time per Multibus request for a byte, word. or first word of a long -

word access and I denotes the mean waiting time per Multibus request for the second word of a .. "

long word access. taib and tarb denote the mean access time for Multibus and Ringbus accesses

respectively. -4

Since i, and t2 are the only parameters which determine the throughput of the Multibus

which arc not exrenous inputs to the Multibus model, the performance metric for the Multihus

effectively reduces io the pair (ij). In this chapter we take the performance metric to be the

mean total waiting time per cycle defined by wi' ' 1 -w 'his gives a single quantity for the

performance, as with throughput, and is more closely related to the Multibus mnidcls than

SI. 'I 4 - S.. . . . . ..OW N, * ... . ,'
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throughput. ,,.

All the processors on a Multibus and the Multibus arbitration circuitry are synchroni/ed by it

master clock with a IOOnsec period (one master clock per Mullihiis). lhu; the Multibus sutlsystein
p ,-

inherently operates in discrete time. We inodel this discrete time operation with continuous lime

models to take advantage of the simple, powerful, and well developed modeling methods available Pd

in continuous time, such as product for qucucing networks. It is argued in thc following para-

graphs that there is not much loss of precision in this approach.

We are not interested in modeling the Multibus at the level of the Multibus clock. Such

detail is unnecessary for our purposes. Furthermore, any model based on the state Of the Multibus

at every rising edge of the Multibus clock would be unwieldy (be to the large number of such -

states required. Rather. we are interested in modeling tie Multihus at the c'ent level. We define

an event to be a request for a Multibus access or te completion of a Multibus access. (We do not

consider the initiation of" a Multibus access to be an event since either it is equivalent to it reqtle.st I, *

for a Multibus access if' there are no other Multibus accesses pending or in progress or it is

equivalent to the completion of a Multibus access if a Multibus is in progress. Similarly, we do not

consider the initiation or completion of processing to he an esent since they are equivalent rcspec-

tively to the completion of' a Multibus access and a request for a Multibus access). Itecausc the

Multibus actually operates in discrete time synchronous with the rising edges of the Mtltibus

clock, the time between successive events is the some integer mutluple of 10nsec and one or two

or more event% can occur simultmeously. In modeling the NI ultihuS inl continuous time at the

event level, we make the following two approxinmations. "-

1) We assume that the time between successive events can take on continuous values. .

2) We assume that only one event can occur at a time.

The first approximation introduces a maximum error of ±50nscc in interevcnt times. Since in

the actual Multibus the processing time is at least 00nsec and the access time is at least 1000nsec

(see Appendix A), the loss of precision introduced by the first approximation is small. For the--

second approximation, we note that the probability of two or more events occurring in the sine

Multibus clock period i:; small. Thus there will probably only be a very smiall loss of precision due

to the second approximation. 'Therefore there should not be much loss of precision introduced by

electing to model the Multibus in continuous time. --

'The Multibus subsystem can be modeled as a queueing system with a finite number of custo-

mers. Consider the case in which 0 and P -0 - i.e. only Multihus accesses and no explicit

treatment of long word accesses - for each processor model. l)enote the number of proces;sors by

N. We can represct the operation of each processor by ai customer which visits service centers ,

(scrves). Once a customer arrivcs at a ,erver, it rciains there for a period of time governed by '-"""

- - .d " " ." " p. .- ' * ' .. "..
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thc scr'icc time probability distribution for that ser er. ILet thcre bc N servers. called processor

servers since they represent the N processors, each with an identical scrvice time distribution equal
.,* -I

to the processing time distribution. I .et there be one server. called a Multibus server since it %

represents Multibus accesses, with its service timc distribution equal to the Multibus access time
,%,,

distribution. (Since all Multibus accesses have the same access time distribution, it is sufficient to

have just one server to represcnt a Multibus access.) Finally. let there be no more than one custo-

mer in service at a server at any instant and let there be N customers.

Each of the N customers behaves as follows. A customer visits a processor server and

remains there for some processing time after which it joins a queue of other customers waiting to

visit the Multibus server. When the customer eventually visits the Multibus server, it remains there

for some access time and then it returns to the same proces)r server.

'Ibis processor-qucue-Multibus cycle of a customer represents the processing-waiting-

accessing cycle of the processor model (with 4i-0 and P =0). The finite customer queueing sys-

ten is pictured in Figure 2.1 below. '[he circles represent servers.

Muttibus
CF's Qcue

Processors

Figure 2.1: Finite customer queueing system

To ICithfully model the operation of the Multibus arbitration circuitry. the queucing discip-

line at the Multibus server should he round-robin. I lowever, to ease analysis, we will assume that

this queueing discipline is first-come-first-served (FCI:S). Interestingly, there is no loss of precision

with this assumption. Since the Multibus server is work-conserving (i.e. the server is always busy "

while there rcmains work for it to do) and since all customers are identical (i.e. same processing

and access time distribution for each customer), tile mean waiting time per access on the Multibus.

t,, is de same for botl qucucing disLiplines [M 11. Of course, the waiting time distributions will

"1"t, is Wie nitcan waiting inic pct ace s fior any accc-s on the Mriltibu.N - byte. word. firat word of long word.

and sccond word of ong word If I --0. , / - 1 . h) Verual /, *1,, so It ,.;t i,

e 0 e
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not necessarily be the same (intuitively, one expects the variance of the waiting time to be greater

with the FCIFS discipline than with the round-robin discipline), but this doesn't matter since our

performancc metric just depends on the mean waiting time, tw.

We call the finite customer queueing system. depicted in Figure 2.1, with a FCFS queueing

discipline, the basic queueing model of the Multibus. In later sections we extend this basic qucue-

ing model, known as the machine repairmen model in the queueing theory literature, to accommo-

date 4'*0 and P*0. A convenient notation to describe the basic qucueing model is S 1 /S 2 /I//N.

S, and S2 represent symbols denoting, respectively, the processing and access time distributions.

The 1 indicates a single server queue and N indicates the total number of customers. Some con-

monly used symbols arc M for memoryless (i.e. exponential), 1) for deterministic, Lr for r stage

Erlangian, and G for general. Thus M/M/I//N denotes a basic queueing model with exponential

processing and access times and N processors.

A rather exhaustive analytical treatment of the basic queueing model with different process-

ing and access time distributions is presented in section 2.2 through 2.7. Section 2.2 deals with ,.-

deterministic processing and access times. Section 2.3 characterizes the general bchaviour of 1W for

probabilistic processing and access times. Sections 2.4, 2.5, and 2.6 develop results for tie

M/M/I//N, M/G/I//N, and G/M/I//N models respectively. Most of section 2.6 is devoted to

describing the known results for a class of quelicing networks with convenient product forn solu-

tions. These results are heavily utilized in sections 2.8 and 2.9. Section 2.7 presents a recur:;ive

technique for handling general processing and access time probability distributions. This is ,e

believed to be the first demonstration of a reasonable solution method specifically for the

GIG/I//N model.

Generalizations of the basic queueing model to handle f*O and '*O are covered in see-

tions 2.8 and 2.9. Section 2.8 treats the case with /3*O and 4,=O and section 2.9 treats the general %

case with /1 0 and 440. Section 2.9 discusses the decomposition of Concert into Multibus and

Ringbus models and develops the hooks for the later integration of these two models. Specifically,

the single processor equivalent of the Multibus is developed and relations yielding its parameters

are derived.

Lastly, section 2.10 discusses the relaxation of the four major assumptions of 1) identical pro-

cessors, 2) simple processor model. 3) stationary processor model, and 4) independent processors.

The most important sections in Chapter 2 are 2.2. 2.3. 2.4, 2.8, and 2.9. Section 2.6 is also impor- %

tant, but only as a primer on product form solutions of qucucing networks for sctfions 2.8 and 2.9.

Sections 2.5 and 2.7 are, in some sense, icing on the cake.

V
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. e)vterministic Model

In this first model, both i,, and , are deterministic quantities.

Initialy the independent proces:sors are unsyiclironized. I lowe'cr. duc to the determinism of
"...

tp and fa, every time two or (nore memory requests occur at tie same time that the bus is --

currently in use, the processors originating those requests are synchronized with each other and

with the processor currently using the bus. 'Ilbe synchronization does not occur at the instant of

conflict but rather at the instant the access in progress terminates and the request at the head of '"

the FCFS queue waiting fior the hus begins its access. At this instant, thc two respective proces-

sors arc synchronized so that the cycle of the one just beginning its access lags the other by exactly

i,. Similarly each processor which has a request in the queue is synchronized so as to lag exactly

'a behind the processor of the previous access. Since ip is also deterministic and the same for

eery processor, tie synchroni:ed processors will make their next requests at intervals of t,.

Theorenm 2.1

With independent identical processors with deterministic processing time ir and deterministic ""-""

access time t, served by a single bus in FiCFS order, the waiting time per request after at most two

cycles of every processor is the same for c~cry request. Morener, after at most two cycles of ..-

every processor the ICIS queue is either always empty or always nonempty at de instant a

request arrives at the queue.

1I'he proof of this °'heorem is given in appendix 11.

liv construction 1,, -0 when N. the number (of processors on the Mtiltibus, is one. Let N' be

defined as the saturtion point: in the steady state for N < N * W =0 (corresponding to the

queue always empty when a request arrives), and for N > N'. t, > 0 (corresponding to the

queue always nonempty when a request arrives). '[his saturation point is the maximum number of

proces o s tor given tp and 'a that the bus can support in steady state and maintain 1,, 0.O

The maximum numher of processors that the bus can handle with zero wait time far a

request is one (for the bus in use) plus the maximum number of additional processors that can be

processing, but not waiting, while the one processor is currently using the bs. This maximum

number of processors is given by [T' s N!P -- + 1._

For each processor added above N °. all processors will share equally (after initial transients

tI X dnoics the swnact wn er le , than .

%

%. ..%%
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48 Multibus Models

die out) the wait incurred 1y the addition of each processor above the saturadion point, if all pro-

cesors are identical and bus arbitration is ICIS. 'o find 1,. for this case. we may Cquate the

arriva! rate of" requests to the bus system to thc service rate of requests at th: bus system. We
have then:

N 1

from which we obtain t, =-NIa--(ia + Ia).

h'lie wait per request normalized by the access time is

-~-N 1)
la la '

At this point (and in tie siequel) it is more convenient to consider N and N as continuous rather
I.

than discrete quantities. The saturation point is thus redefined as N -
-  i. Although the dis-I.

cussioti will consider N and N ° as continuous quantities, these quantities should be undcrstood to

be in fact discrete %henever they are given a physical interpretation.

Substitutiing for N', we lobiafI,- 10. N N N hich completely describes tie
-a N-N N > N

behavior of 1. in the steady state for the deterministic case (see Figure 2.2).

.,

% "
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50 Multibus Models

2.3 Probabilistic Model - Geeral Behaviour

We now consider ip and 'a to he stationary randoim variahles with given probability distriu-

tions. We assume that the randoia variable i, for each processor and die random variables 'a are 

independent of each other and all other random variables as discussed in section 2.1. We als.

makc the reasonable assumption that the random variables i. and ta have finite means i.e.

1:',J<oo and E'1,!<oo.

In addition to dcsc assumptions and those in section 1.3.2 we make the following existence

and ergodicity assumptions in this section. %

l'xislence aid Ergodicity Assumptions

I. We assume that the mean waiting time per request, t-, exists. More precisely, we assume that a.

stationary probability distribution exists for i,, (since i, is defined in terms of its probability

distribution thnction). I.et the waiting time of the nih request to enter the queue be denoted

by i K so that 1', }. n> i. is a sequence of the waiting times of successive requests. 'be *.

assumption means that lir Pr(1 .<y) exists and equals some function W(y) where
n -4

00 -

llr(l1 . i) is the probability distribution of the waiting time of' the it' request and wO.) is

the stitionary probability distribution for 1.,

2. We assume that the waiting ttle process is ergodic so that ensemble averages equal (discrete)

time averages i.e. we assume that -, lim 1 I.n
-  0 0  

i t-:

3. We assume that the time averages necessary for any application of I ittle's ILaw to the queueing

system described in section 2.1 exist. Little's Law is the following statement:

Consider any system at which customers arrive, spend time in the system, and

depart. I.et N(t) be the number of arrivals at the system in the interval 10.1]. /(t) be

the number of customers in the system at time t. and wk be the time spent in the

system by the ki h custorner to arrive. If the rollowing limits exist and are finite

X: lim ---- average arrival rate

1, = lim -1 f (s)ds. avrage number in system
1-00 10

W l mi-- wi, average time in systcm

-oo k,

then 1. z:X 14' IS!].

These asumptions are necessary t, ensureh that the resilts de\eloped in this section are

strictly correct. All the following sectiens in lhis chapter dCal \0ith spclific probability distributions

%t %. . ' _.
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.. Jb

aind/or specific situiations for which these assiiioptionis arc valid in all cases: thus it is unnecessary -
to Staite them in the sequl. I lowc~ cr, this section deals with umispccificd gencral distributions for

which it iS difleuIL t0 'h1OW that these assumptions are valid in all cases.

'[heC Purpose Of the first assumption is straightflorward - 14 Must exist hcfoie we can talk

about it, The second J-6sum1ption ensures that thc average waiting- timec derived from an application

of Li ttIc's L aw equals i,. The third assumption cnsures that it is valid to apply L ittlecs L aw. Note

that if' the time itverages in this third assumption exist, then they' must be finite since we are dleal-

ing with a closed queucing system. If one is willing to dleal With a time avcrage for the waiting

time pci i-equtest rather than an ensemble average (i.e. at meian), then only thle third assumption is

necessary. We present aind prove some conditions in Appendix It for which) thle threeC assum1ptions

are valid.

We now consider the general behaviour of' tie mnean waiting time per request, I,, subject to

the pirceding assumptions. For at single p~rocesso~r we ,tilI have 1,, 0. We can dei e a general for-

oIa. I'i i, with N processors using I AiLe\ I Law.

L et hi denote the mean number of' requests queuied tbr service and currently iii serx ice on

thle busN. I et 11P denote thle mean number of processors which are processing (L~e. which do not-

ha\':2 an twtstainding requc!st). L et p denote the probahilimy Of die server i.e. the bus) hein- busy.

I _- t XV'' 'lenote Oie mecan ar rival rate of requests to the buS. SintCe thle system- is cloSCd With at finl-

ite numiber ot reqjuests, V~ff is also the mean service rate Of reCquests. --

Then by Little's I aw we have: ~ ~- i.Applying ILittle's I aw twice ore we have

~~~\Cff4 V and h1  Pf=, Sneh* N we thus have_ N-i n i, P-
P r

yielding

la P a p

where wve now definle /P~' 1. '1Ihis sameil result Can1 be obtaineld hy conlsider-ing thle

throuighl put balanice equation T-N___ p It follows froml tho definition gi cin abo~ e that

IJ<p <I. Jnd thus ->A1 N iV.For (fhe de~term iu istic caSe with N> V p I aMid tus the

lower hounid for 1 Vis acliie~ed liv the (letc imiin ist ic caise. Note that ;is N-M.G p-1, thuls yield-

* in" thle sane aIsynptoic l)chi\itir X doriked in smiton 2.?. For A 'ehv that >0)

r,

-*.--* % %~ ..
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and this lower bound is again achieved hy the detcnninistic case. 'lherefore ... >mux(O, NV N')
'a

where the lower bound is achieved by the deterministic case. We summarize this result as a

lemma:

ILemma 2.1

The mean waiting time per request in the previously described queueing system model with

stationary processing and access times with means i p<00 and Ia <00 respectively and subject to

the previous assumptions is bounded from below by the mean wait per request in lie deterministic

model with the same processing and access times ip and 1. respectively.

We ca;;1 n also ta htivN*I -ivN Oher eus the notation iiP(N) to indicate the

nicn witig tme ,, n a N roc&,;r sste). hisfolowssince adding another processor can-ON

Suprocessor

more request in the queue than it would in the corresponding A' processor system. T[he following

theorem justifis this inuitive feeling.

llicorcni 2.2

Consider the qee +1ing model described previously with stationary processing and access time

distributions with means i <00 and a <00 respectively and subject to the previous assumptions.

Then iv(N + 1)- ii(N) 4, where i(N) denotes the mean waiting time in a N processor model.

rroor:

Given in Appendix Iti.

The foregoing allows us to conclude that the mean wait per request for any sttionary pro-

ccssing and access time distributions has a curve of the general shape indicated below. Tihe ran-

domness introduced by tie probability distributions rounds the "knec of die curve.

%• %
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p%.

Normali/ed ~
mean

waiting Asmptoe:tt.
time -N-
per

request

0 N N
Saturation point # Proc:.*.ors

" %"

Figiire 2.3: w vs. N for general probabilistic case-

'lhe following sections consider the behaviour of i. for specific probability distributions and

for modifications to the basic quCuCing model.

2.4 l'.xponentiaI I)istribmi ,l latvssing aid Service Times - NM//l//N Model

The analysis of this MINI/I/N model is straightforward. Iollowing Klcir(;(k [K31, we

define state k to represent k rcqqucsts queetid for service or in service (0 < k < N) resulting in

the (disurete suite continuous lime) bildi-dea!h Markov chain depicted in the state transition

diagram below.

NA (N-I iA N 2)X (N -k + (N-k)\ A A%

2 k

Figure 2.4: Markov chain of M/M/l//N model

The steady st tc probabilities. wk, satisfy the local balance equations

rk*P/k.k + I r-nWk i l'P/ + I.k, 0 < k < N, where pi. denotes the probability of going from state i

to j in one transition. From ifie local balance equations we obtain:

,,k : ( X). I < k < N' (2.1)
(N -Vk)! IL

4, % % % % % % -

~~~ V-" w 6 d .
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The mean queue length is iq (k -- I)w arnd the average arrival rate to the queue is
N-I

X,-j. -A I (N - k )wk. Iy I.ittlc's i.aw. the mean queucing time (mean time wair in queue
A O

nq
before being served) is I,, -- . The normalized mean wait per request is thus

;k~ff '_V N!(k - l)a -

k =2 (N - !
N2 !-k -(2.2)

where a : IP

ResulLs for the case a 1.0, 2.0, 5.0, and 10.0 are displ-lycd in Figure 2.5.

..

I N

4

.°,
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2.5 I'xponienti.Il )istribulted I'roccssi g and (;i'ncraI Svrvice -N/G/I//N Model

In this section we gencraleze the M/M/I//N model of the previous section to include any

stationary femovy access (or sorvice) time distribution. With a general service distribution. the

probability distribution of the remaining service time, given that there is a customer in service,

depends on the time that the customer has already been in service. In such a case, the service

time distribution is said it have memory. Since a state must include all history or must summarize

all the history of the system relevant to predicting the future of tie system, the state description of

whatever system the server is in must include the expended service time (or alternately, the time

remaining in the service of the customer), whenever a customer is in service.

For example, otie state description of the M/G/l//N system is to let the stites he (k,)

where k requests are queued for service or in service and the request presently in service has been

in service fir time /, I< < N, I>0: and (0) when no requests arc queued for service or in ser-

vice. 'I Ile exponential distribution has the special property that the probability distribution of the

time remaimng is inJepcidcn of the time expired so far. This memoryless property is the reason

whty the servicc time completed so lar is irrelevant for the M/M/l//N model (which is why the

state in tile prelious section was simply (A ). (0<k <N). and is the reason why the processing time

completed s(; far at each processor is irrelevant fir Io'h the M/(/l//N and M/M/I//N models.

The lact that time intist be included in tle state de.sc:iption c(;niptcates the analysis (f (fe

M/G/I//N model. We must now deal with an u'icountablv infinite number oF states rather than

the tinite number of (he NI/N/I//N model. Three analytical methods arc common Ibr finding

the steady state distribution of the numbler ol" requests queued for service or in service, from-

which we can then find the mean waiting lime per request.

'V'

1. Stages , .

In this method, the server is subdivided into a number of stages whcre each stage has an *N.

exponential service distribution and only a single customer is allowed into the system oif stages at a

time j'us't s only a single customei is in the original server at a time). Considoiing the entry and

exit points (if the server to be special stages with zero service time, thle neCXt stalge a Customer W

enters afler leaving the present stage is governed by a probability distribution which may depend

on the present stage. The mean service time in each stage may also depend on the stage. Cox

[C41 has shown that it is possiNe to sy nthesize any probability density which has a rational I.aplace

transform by a system of stages as just described. " Cox has also shown that the system of stages in

F.igure 2.6 is canonic in that it captures the full generality of densities which can be synthesized by

SIfr coniplex valuies arc p ciniiicd fir Ih c ci cia! pmr;mcle (rs e (Hcall Ithati an cxponenlial disltibution is iut-

ly char'cciri/cd 1y a sic;glc par:amour c l.li' it; tle iciipla'cl or itil nica , ,,

% %, -,.
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tie method of stagcs. Iln particular, kIcdback and/or Icedlorward paths add no further generality.

It is sometimes convenient to consider scries-parallel or parallel-series arrangements of the stages,

rather than the ladder arrangement in Figure 2.6.

A-.; lnentil %ervice time Ui,

with parameter spt

P I
a a

2T

Figure 2.6: Canonic ladder arrangement of stages

'"lie advantage of the method of stages is that the state space is now finite, or at worst count-

ably infinite. 'lhis arises becatise each stage in the scrver is exponential and thus it suffices for the

suate to include just the stage in which the customer is, rather than the time completed so far in

the service.

The resulting state transition diagram will be similar to that in Figure 2.6 in the previous sec,

tion except that the the states are more conveniently arranged in a two dimcnsional manner and

transitions are not limited to nearest ivcighbours. I lie equilibrium equations relating the steady

state probabilities are easily obtained. Since these are linear equations it is in Principle straightfor-

ward to find the steady suite probabilities. Note these arc the steady state unconditional probabil-

ities: they must be summed over the appropriate suites to obtain the steady state marginal proba-

bilities such as the number of requests queued for service or in service.

The method of stages has three disadvantages. First, closed form resulLs are difficult to

obtain except in special cases duc to the complexity of solving a large number of simuluncous

linear equations. Thus it is difflicult to detennine how the result varies its a Function of the input

parameters such as mean arrival and mean service times without recomputing de result for each

set of parameters.

Second, the exponential parametcr and next stage probability distribution must be found for

each stage, preferably so as to minimize the number of stages required to represent a given proba- ".

bility distribution. This can be accomplished by matching either the poles and zeroes of the

Laplace transform of the stage system with the poles and zeroes of the I.aplace transform of the

given probability density or by matching polynomial coefficienLs of the two I.aplace transforms

(beth amount to the same thing). In either case, the matching involves solving a set of nonlinear

equations relating the stage parameters. The number of sLges required is equal to the number of %

poles in the I.aplace transform of the given probability density, asstming all pole-iero
-%

,. ,.._%.%. - ..... .,- .-. , - . . ... .
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catncellatiotis have beenl removed. As might he imagined, certain interconnections of the stages

make the solution of the siniultanCous equaions easir ihan others. While straightifiward iln prin-
ciple. finding the stage parameters requires a sllihstanlial aniount of' work ill the general case.

Third. only probability densities with rational I.aplace transforms can he handled exactly in a

finite number of stages. Ilowcver, since any norrational function can be approximated arbitrarily

closely by rational functions, we can in principle List the method of stages for any arhitrary (sta-

tionary) probability density. The problem in practice is how to best approximate a given distrihu-

tion by one that has rational transform.

2. Imibedded Marko (baia

In this method, the two dimensional state description (k .I ) of the system is reduced to a one

dimensional stUte description (k ) by looking at the system only at select points in time. lhesc

points must be such that given the numnber in the system. (k). at one such point, and the inputL%

to the system, then at the next point in time we can calculate the number in the system. Thus

these points Must implicitly include the time that has been expended on the customer in service.

On, set of such point, is the service departure times - i.e. the time at which a custoler corn-

pletes service. At a departure instant, the expended service of the next customcr is /ero (id the

residuaI service of the pre';ent customer is tero) ad the tivie to the next departure is given by the

unconditional service time distribution as long as at least one custohicr i.N left in the s)stem. If the

system is empty, the time to the next departure instant is given by tihe conIvolutIo)n of the arrival

time distribution (which is exponential with parameter NA for the Mi/II//N case) with the %

unconditional service time distriibution.t

The behavior of the system at the imbedded points - the dcparture instants - can be

described by a Markov chain. ILet the state of the Marko i chain be the number of customers in .

the system immediately after a departure. The transition probabilities can be determined from the

arrival and service time distributions. I'ic steady state solution (of the Marko chain gives the

steady state probability of finding k customers in the original system at the departure instants, but

not the correct steady state probability at arbitrary times between departures. (It actually does

give the correct results at all times if de customer populatium N ;,; infinite and the arrival time dis-

tribution is expo'ential.) I lowever, the mean waiting time, as we are concerned with in this

chapter, is suflicien! to determine the probability that the server is idle and this is easy to %

By syslem wc mean in this case dhc Ih (I:[S queuc and its server. ,. ,N

t" 'he proh;iility disrihution of the suni of two indep ndci.I random varuibles is the Conivolulion or the two
respective probabilitiy denisities.

% =

%_, %,,,% -
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determine. 'llius the steady state shlution of the one dimensional imbedded MIarkov chain at

departure instants is sufficient to find the mean waiting time.

Other sets of points exist which may he used to derive an imbedded Markov chain but they

are not as convenient since the expended service of the next customer will not be zero (otherwise

we have the same set of points as before). 'Ihis necessitatcs handling the messy case when a cus-

tmer does not remain in service long enough to reach the imbedded point.

The advantage or the imbedded Markov chain method is that general service time distribu-

tions may be handled explicitly and without solving for a myriad of parameters as in the stage Y

method. The disadvantage is again that it is difficult to obtain closed form resulLts. This is princi-

pally due to all the bookkeeping required to keep track of the numher of "active" arrival genera-

tors in the finite population case. Such bookkeeping is unneces ary in the infinite population case .

and explicit resulls for the mean waiting time (depending only on de mean arrival rate and the

mean and variance of the service time!) and the waiting time distribution can be obtained. .

3. Supplementary Variables %

In this method the prohlem posed hy the two dimensional discrete-continuous state space

(k.1) (for k #0) is attackcd directly by sohing the related differential diffirence equations. Closed

form results For arbitrary sci ice time densitiCs can be obtained by. this method. We give the main

resulLs bclo%, From the derivation o1 .laiswal IJ I]. Lct

p be tie server utiilization i.e. the probability that the server is busy .-e

6 be the mean busy period of the setvcr (the mean time interval between

the server being idle)
be

be the mean of the exponential processing time

1, be the service time (i.e. access time) with density f(,) and mean 'a

Then

N= ~~ (2.3)

I"__(iX) 'SO.""

i ~ I- I"(iX) "..

where q(m) -

1, ,=0

00

and=- j , A'( )d,. the laplace transform off(/i ).
0 %

le- P~
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inally p - -

NA NAb

Ily applying little's Law twice we can detennine the mean waiting time (i.e. queueing time)
per request, t-.. From I.ittle's Law we have p- Xff ia where Xff ::X X average number proccs-

sors running L--X(N -- I.) and I. denotes the mean number of request in the FC'FS queue or in
c-N -ap where a - I Again from I.ittle's I.aw we have

scrvicc. Thus I. = N --- pwhrae ta Aga

, ---. "lhereforcX,'S

1w L_ N
la P P '',,

Substiaiting for p, we obtain

(2.4)2
.=N -al I + N-N +- (2.4) "'''

SbN . ,,

whcrc b - ... (he normalied nean busy period i.e. the average number of consecutive rcquCsts

served without an intcr'ening idle period). ,,

'quation which should be familiar as just -- in the deten.ninistic case for N>N* plus'
ta bN

Iquation 2.4 might lead one to conjecture that the maximum difference in mean waiting

time per request between the M/G/l//N and detcrninistic model (section 2.2) occurs at the knee

N ' N. Th'ie following lemma shows that this conjecture is indeed correct. in even a more general

setting, provided N' is an integer. The treatment must be more careful for non-integer N* since

the queueing sy:tern model allows only integer N. The general idea, however, still holds when N

is non-integer. (The graphs have been drawn as continious in N to emphasi/c the trends.)
0S *W

I onna:

L.et w(N) be the mean waiting time per request in a G/G/If/N queucing system with arbi- .

trary processing and access time distributions with means p and ta respectively. I.et w)(N) be'"

tie mean waiting time per request in a I)I/I//N queueing system with constant processing and

access times ip and t, respectively. Then tile difference w(N)- w1 (N) is maximum at either

N- N orN- N" where N* .- a+la [a

e W I e W ' ' %
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Proof:

Consider i<N<N°:

Froin section 2.2 wD(N 1 0 in this range. In addition win( / I) Fv(N) 0 for

every N> 1. i.e. w(N) is nondecreasing in N. "lhus w(N) -wj)(N) is maximum

for I<N<N' when N is the largest integer less than or equal to N ° - i.e.

Consider N * < N:

Front section 2.2 wi)(N)--N -- N* and wp(N - I)-- wI(N). i-,a in this range. In

addition w(N / i)-w(N) _,, by 'lheorem 2.2. Let N' be the smallest integer

greater than or equal to N* - i.e. N' N - and let w(N) --  ,)(N")-.

'llcn w(NO 1 I) - wD(N 0 t I )<w(N)- w)(N) = S. By induction on

n =0,1,2.. , - we have w(N' + n)-- w/)(N° i n)8 foi)r all n >0. Thus

w(N) w1)(N) is maximum "r N <N when N N

'llierefore w(N)- wj)(N) is maximum at either N N INor N - IN .

Remark:

If N is nonintcgcr these two points are distinct and the one at which the maximum occurs

depends on N IN' and w(N).

2.5.1 Exponential )istributed Processing and Deterministic Service - M/I)/I//N Model

We now consider as a special case of the firegoing a model with deterministic (constant)

memory access times. This special case is interesting for two reasons. 'Ihe first reason is that

memory accesses on the isolated Multibus directed to the global memory have a relatively constant

duration. 'lliere is still randomness associated with the access time due to such factors as read-
I..

modify-write accesses (which have a significantly longer access time than normal read and write

accesses) and variations in the propagation delays of the logic circuitry and signal paths. If we
consider read-modify-writc accesses to be so infhequent that they can be ignored, we can get some -,

idea of the Multibus access time distribution by referring to section 3 of Appendix A. Roughly

90% or more of the Multibus accesses to the global memory take 1.00 or 1.10 psec. Thus a con-

stant access time seems like a reasonable approximation in this case. I iowever, memory accesses

on the Mtulibus directed to local memory modules can vary over a much wider range (as indicated

in Figure A.5 in Appendix A) dut: to the I IS3 traffic on the other port of the accessed memory.

Thus a constant access time does not seem like am reaso(iablC approximauion in this case. VV

%2



62 Multibus Models

The second reason for considering tie detCerministic case is tha tie mean wait per request in

the deterministic case provides a lower bound on the mean wait per request for all M/G/I//N

models with the same mcan proccssing and access times. Thus although the exact access time dis-

tribution may not be known (or may be too variablc to be considered constant), we can still bound

the behavior of the mean waiting time.

'lheorcm 2.3

Given that the mean processing and access times arc the same in both the M/G/l//N sys-

tcn and the M/I)/I//N system, thc mean waiting timc (queucing time) in thc M/G/l//N system

is bounded from below by tie mean waiting time in the M/It/l//N system.

Proor:

Following Price [P31. and referring to the M/G/I//N results presented earlier, we

have:

/w is strictly increasing in I..

, is strictly decreasing in p. ....

p is strictly increosing in b,

b is strictly decreasing in 9,(i), and

(i) is strictly increasing in the fitnction I"(s).

'Thus 1, is minimized when F(s) is minimized. Now from Jenscn's Inequality [P1

p.434 Fs)- Ie --St.I> e e Sa, which is tie transform of a deterministic

function. Therefore a constant service time of duration i, gives a lower bound on the

mean waiting tine among all distributions with tie same mean 1'.

All three methods mentioned earlier for tie M/G/l//N model have been applied to the '. .-
solu'tion of tile M/l)/l//N model. ienson and Cox 11121 Us.ed the iethod of stages. They

obtained it closcd form solution for it service distribution cou;sisting of it cascade of r exponential

stages (called ant r stage -rlangian distribution and denoted by 1,r) and then took the limit its

r- 0 0 . Raskin 1R 11 employed an imbedded Markov chain. Jaiswal obtained the closed form solu- .

tions presented earlier using the technique of supplementary variables. In addition. Ashcroft [A31

has derived a solution for tie M/G/l//N model surting with an expression for the mean bLsV

period.

'7%

.V*7'
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04 Illf iblis Models

The ctual resuilts ot the mean waiting time per requcst in die MII)/Il/N model are plot-

ted in Iigure 2.7 Air the sanle cascs xr; in the M/M/l//N model. (The dala f,r this Figure is

Liken from Ashcmofrs paper.) For purposes of* comparison, the earlier M/M/I//N results are :ilo

plotted. Note that the M/MII//N and M /l)/II/N results are very similar except around the

"knee" of the curves.

We also observe the lIlowing:

For a given a, the difference in mean waiting time for dic M/M/I//N and -

M/I)/I//N models first increases with N, and then decreases with N. Similarly, for a

given N, the difference first increases with a and then decreases with a. The max-

imum dillercnce in the mean waiting times occurs close to the "knee" at N =-N * and

increases with N (in tct the maximum diflerence occurred at either N --- N or-..

N N / I in the cases in which numerical results were computed).

The validity of these observations in the general case may be ascertained by examining the difTer-

I _Ience Vv(N)MI/AI,//N - w(N)MID/A/IN - a( -- - - - ) where
bNANuwll/,, b t 1 .uL-I ..-N

NIFNi the normali/ed mecan bu%,y period given byl-4-

bN = - -- - see equations 2.3 and 2.4.)
!a

N-

I-or exponential seivice: I"'(hn,)= 1 , thus bNAl/A/ti/N .= N .-

I- Uli 1 = 111

aaFo(r deterministic service: I"°(m)=)e ",thus 1 Ie a I pi-- g( usn
/"* (In X) a a1.:.

the series expansion of e (i.e. A- ). and threm o. .

1.- r 1 a a

Rather than examining the difference .-'(N )A/AI/I//N -- i(N)/nA//N _A w(N) directly, it J[ "
is easier to rerite Aw (N) as ( , v I i,(N)AI/II//N and examine the ratio %I I ~%w(N )A f I / I

N-N 5  --- ----

w(N ),jfI/M,/N b N ,,•
. ... . . .. .. ..... .. ..-- - -- rl . _

N ~ aw(N)MIID/1//N N- °  .. . , .-

%/P/I//

_ -l, " . ," . . - - - - " - - ." ,
• - - L -*i -; /r I I , .r_
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P. p

For N -I, bN/ , bN / -/1 I and hence r,- 1. As N--00, bN and

bN -00 (at diltlrent ra,.) and N -N -00; hence r -. For N- N* r .../../

which is clearly greater thin I for N> 1. 'llitis A iv(N) must increase and then later decrease with -

N.
[~or small valueCs of a, IA'MI/N and bN are large and hence r. I. For large values

of a, bN,,I//N bNunm/,'N aind again r,= 1. For all values of a, bNM,,A IN :> bNAI/A,/i/N. In par-
ticulair, DN,, >bN and thus r,,> I for medium valucs of a. Since r,, is continuous in

M/flar b ,)I//N Al/A11/I/N

a, this is enough to COnclude that Afv(N) increases with a and later decreases with a (although

not necess:irily monotonically).
, -

2.5.2 Coimenlts %

It is difficult to say mch more of interest about tLe M/G/I//N model without some

knowledge of the access timlie distribution: indeed, ie mean waiting timc pie request is completely

specified by the closed form expression given earlier once the distrihiiion is known.

From section 3.3 of ,\ppendix A we sce that all access times inlst he in t;e ,rge 1.02 [sec

to 1.82 jiscc (allowing for best a,ld worst ca;C propagation dclais and Lrat'lic on dh other memory

port an( assuming no rea-lmodiN'-writes). One miiht conjciturc th;:t. becausf this aiccess time dis-

tribution ik more "dterininisdic" than an eXl)oiiential one Wih thC llC le Cll (and crlainly dIes

not have the long taiis o' the exp(cnial). the nean waiting iine ought t) bC hounded from

above by that for in exponential distribution with the same inw:an. This s indeed the case as th.e

following argument shows.

Recall from equation 2.4 that the mean waiting time per request is given by

-_ N-N +---
/a  bN  r- .4

N -1'

where 6N I-i, I
M>- i(s)

As discussed in the proof of 'heorem 2.3, -- is strictly ilcreasing in I"(s). TlIus to show

'.Af,'A1//1N -* it Sufrn'CCS It) show that ' (i" ) /4/l/l _"(iX) for all i and X>0.

.,;

'p'

ii~ iC ', ,#' i -, Z , e' ', '#" i _ 
-

.e ," " , J" " . ; # , . . " " - ' '. . ' . .. ' " . . ' . . '. - -.. -.. '- - - - - . - . - .. - -. ., - .p
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"beoren 2.4

ILet * ub(s) denote (h Ie Laplace transform of he probability derity Function f,,b(x) with

mean .i where Jl,x )-0 flor ir t [a.,]: 0<, and b<2a. ILet "'(,),!/,/n dcnote the

LIplacc transf)rm of the exponential density function with the same mean b. lhen

F"(S)M/AIA//1N /' ab(S) for s real and s>O.

The proof of this theorem is given in Appendix II. For the case at hand a- 1.02 and

b 1.82 < 20, thus F'(i)A,,M ,/N2!"ab(iX)) for every i and X >0.

"lheorems 2.3 and 2.4 imply that the mean waiting time for the Al/GA//N model as

presented in section 2.5 is boundcdl above and below by the Al/Al/I//N and AI/I)A//N

models respectively, with the stone mean processing and access times. Therefore a quick charac- '

tcri/alion of tie nican wailing limc of the M1/(/l/'N model with any access time distribution

(obeying the restrictions in Theorem 2.4) can be obtained frim the Al/Al//N and AI/D1//N

models. Iurthermore. by analogy with the IPollaezek-Khinchin formula for the mean waiting time -

in the Al/CIA queue "
. one would expect the rican waiting time to vary approximately lincaily

2
vith the squarc ol' the coefficicnt of variation of' the access time distribition given by C2 = -r-.

I lowever. as Pricc [11l points out by means of example, this can be ioisleading since Oic variance

can be dominiated by a few long access times which have little effect on the m-ean waiting timec.

A reasonable model for the :iccess time distribution is an r sta-e I rlangian distribution. Fig-

tre 2.8 shows how the I'rlangian density function varies with r.

' 111C A/(i/ queue is an opeen(qLIucui&IL modcl (as opposed to ilic closed models considered in this chapter)
with ; loisson arrival px'ess and a general service process independent of the arrimal process. bhe mean wating

- p(W(o1 )
lime in the queuc is I, --- - --- where arrivals occur at rae X. %orice has mean i and variancr a.,

2(1 p)

and p r. 2' -- r

Z. % %* 4. *. ' . %'' .. . .. ' A

* l .. .'
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(ix) 20

4

3p

p.-

Itbh= 1/4se

Figure 2.8: Various r stage Friangian density finctions

For the M/',/I//N model it is easy to show that the mean waiting time per rcquest is upper

bounded by that for the M/MII//N. if thc mean processing and access imes are the samTe in cach

case. As above, to show Iw >A, IW , it sufrices to show that -.

F*(iX)AM/IN I' (iX)A,/I:;IN for all i and A,>O. vr,.

'I)M/MA/= i a and IF"(i)M,,1/N =1 Il"*J (i)Mgt-N a i +ra '"

r Dr

Since for r =I and is strictly decreasing in r. the cxcrcisc is
i + a ra +ra

completed. Note that in the limit as r- 0 o the I'riangian distribution approaches a deter-

ministic distribution. "lhus , >1 >1W
AlIP4111/N -WM/t,1A/,N - W/DA,/1N

-t 0 0-
.%..

5,'..

#" = d ' , , , -• ,. e e . . . . . , . , ,p €" . • ,P".° • . • , • * " " •, " ." ." -
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2.6 General P~rocessinag and E'xponecntial Aiess Tlime IDistribtifons -- (G/M/l//N Model

We now consider the elnhct of, the processing imcn distribution oil the mean waiting time per

request. For this sec tion we keep the set-vice tirnc distributioni exponential to hrcrwlititte coiripa ison

With the carlier M/M/l//N model and to determnine the relative effect of' changes in processing

and scrvicc timec distribution% with respect to the M/M/I//N model.

T'he G/M/l//N miodel could be solved using any of the thrcc methods described in section

3. I lowever they all become cLumbersomec because whatever mecthod is chosen mu1Lst essentially be

applied N times since there are N general distributions. 'The state description must, explicitly or

implicitly. contain thle processing time completed so far at each processor that is busy and the

number or' requests waiting for or in service. 'Thus there are anywhere from 0I to NV continuous

'.ariablcs in [lhe state destcription. I'his leaves the imbedded Markov chain and supplementlary

%ariale miethods hopelessly comzplicated for reasonable values of' N. I )ireet application oif the

method of' stages is also very complicated. I lowever. in the special case of thle (/M/il/N model

- duc to the exponeiale a.ccss tirac distributioJn - thle solution of' the equilibriumn equations has a

very simple formi.

2.6.1 P'roduct t'orin Solutions

Inl certain cases thle steady -state probabilities Ibr a systemn of' two cor more interconnected

(lielics hlilc (lhe following form:

I ct the '.ector x, denote the btaie of queuec i, and let v., denote thle steady state probability

of that Suae whenl queue i is in isolation. Then thle overall. or gOubal, state of the systemt is give-n

hY A' X 2 .~, ).X IX)enotC ie S(teady-state probability of global suite A' by ir,,'. Tlhen

C ~~ where C is a normal iAing constant.

Any system in which the steadi, -state probabilities can be expressed in such a fornn is said to

ha'. i prwii' fi~npm A~ lut ion. Prn dnjct Ibrm soIlutions arc extremelY LOin'.enient in that one can

di1spense Wil i ho '.iig thie 00),1 coalcuii ibri um equations: it is su Ificicirt to soli'.e ror the steady -state

p,-rhaihriitics l'Or each queuec inl ikoilrion. [in thle follo'.. g we suinitnl'/e the matin resuilts known -

pertaining to product foi ill soltitirms in qtieneing nietoworks ats (le-kribed by ',,lly [1K 11.

I hec principal result is thre folh iw inrg:

Suppose there are ii queueLIs (the (lUtIle is though,,It of ats at hlatcv box here and includes the

,,ci . ) Oldtii queueC) and A 1ttal or k c i.rs-.c of en ~t( rs in thle 0'.crall sstert. For each queuie '.

iassume th.it no more thanr one curstomuer enters or lea'. s the qtirene at an po int in time. Le.t

e,)(.)) ui)1)j)jil l~ r qlirc u, )''Jiliioto ( e l.' A !! [tic tII.rl set of' I rwse' A (1) '. r'aineY that1 qteueti c

ari1d .1hS1l111C ha iSu11ire c.i11i1t)( 01. lute. "N sstl ' pus tloulul ill,,, queueli. I Ct thle 4tteo

% % Z '
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queue i at time I be denoted by x,(t) and assume that the stute information allows die number of

customers O1 cach class at tie qtictie to l)e determined. (f'each queue i is quasi-reversible in isola-

tion, then die equilibrium probability distribution hi% the product form given above.

A queue i is quasi-reversible if:

1) its state xi(t) is a statonary Markov process.

2) tie arrival irnes of class k customers, kEK(i) after time I arc independent of xi(I) before or

at I, %

3) the departure times of class k customers, k EK(i) after time i are independent of xj(i) at or

after i, and V

4) the mean rate of class / arrival!; and departures is equal for every k EK(i).

If a queue is quasi-reversible, then points 2 and 3 imply that the arrival and departure

processes of class k customers are independent Poisson processes. A

Two types of queues are known to be quasi-reversible. In both types, the arrival process of

class k customers is Poisson with rate A(k ), giving a total arrival rate of =- YX (k ). The first
k

type is ,li:tinguished by exponcntially distributed service times with the same mean service for a([

classes of customer:; (although the mean may vary with the number of customers in the queue).

Kelly [K II describes this type of quue as follows:

Assume we arc dealing with queue i and let ni be the total number of customers in the
queue.

(i) t-ch customer requires an amount of service which is a random variable exponentially distri-

buted with mean IL.

(ii) A total service eftrt is supplied at the rate 4pi(ni), where qi(nzi)>0 if n,>0. 1
(iii)A proportion y,(I.nj) of this effort is directed to the customer in position 1, (I <I <i). When

this customer completes service and leaves the queue, the customers in positions I t I.1 + 2.....i1

move to positions I-./ - I respectively.

(iv)A customer arriving at (Iueue i moves into position I (1 <I < ni i I) with probability t(1., i)

Customers previously in positions I./ I .ii move to positions I + 1.1, 2.....n i I respectively. IV 6

The amount of service a customer requires at queue i is assumed to be independent of the

amount of service the same customer requires in other queues and independent of the amount of

service all other customers in queue i require. For example, a FCt-S queue with A classes or cus- -

tomers, each class with Poisson arrivals of rate A(k ). E A' and the same exponentially distributed

service for all customers can be dc.sribcd by:

0( 1  2."

W..':::,:;':':, .. : . , , v , . - , . . - .... - .,,. - - .- . , . . . . - . - - ., . . , - - - ., . . -.
% ,% %, . . ' ;r , , .,. . , .,, . .,.,. ,.. .. - ., . . . ,' . . . . ,. . . , .. . .,-,.. , % .. ,-,, .- . ,
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cS(/,n) - / -- I ..1

Quasi-reversiblc queues of thc first type (also called gcncralizcd M/M/. qucucs), can bc described

by the suate x(i)-(n,c(l) ...... c(n)) whcre n is thc number of customers in thc qucue and

c(I).l<I<n, is the class of thc customer in the !Ph position of the queue. 'lhc state x(t) is a sta- .x-

tionary Markov process with steady-state probability

where K is a nonnalizing constant IK I."

The steady-state probability of die non-Markovian state x i(1) (n(lln(2). (K 11, where

n(k ) is the number of customers of class k in thc qucue. can be Ibund by considering all possible

ways of arranging in customers in k classes.

P1 P2" .... Pk 2.5)
jz I ipi)nl ! n(2)! n(K)2

X(k )."
Pk

Finally, the steady-state probability of the non-Markovian state x ll(t)z(n), can be found by

summing rx over all possible ways to arrange t CLIS(0o1Mes. .

nj! (- (2) "(2) ... (K). %
"XI ~ i'P(I)A n(t() #n(K)-n ,i(l)! ni(2)! .. n(K)! P 2P

(where

n(l};,02)+ "'- n(K)~ m.. '

, t

means
± ± ... ± ..---:

nit)- n(2) -0 n( = )=O

such that n (I) i it (2) - • n(K) /! at all times) yielding ',.%,

Iia Pi[I))I k I i 1

.%t

, __ t... :.,-..*. . *,
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The second type of quasi-reversible quecs is dcscribed by Kelly [K I] inl a similar manner.

The description is die same as above except tbr:

(i) The service required by a customer is a randoin varial)le from an arbitrary distribution which

may depend on the class of the customer.

(iv)Samc as above except the symmetry condition 8(IJ~, + 1)=y(,n, 4 1) is imposed for every

--.. n+ I.

Queues of this second type are called symmetric queues. For example, a server- sharing

queue (essentially a round-robin queue with infinitesimal quantum size so all customers are effec-

tively simultaneously in service) can be described by y(I1n) = 1 1,2.-: n>O. and 9)(0i)=1.
11

A last come first served (I.'FS)queue with preemption can be described by y(nn),--I, n, .

n - .2..... and p,(n )= I for n >0. Finally, an infinite server queue can he described by -y(ln)z n.

,>1, and qp(n)z- , 1,2..; n >1.

Note that a FCFS queue is not a symmetric queue. Therefore a FCFS queue with anything

other than the same exponentially distributed service for all customers (as described in le first

type of quisi-reversible queues) does not fit into the two types of quasi-reversible queues just

described. Indeed, such FCFS queue.; ar, not quasi-reversible since the departure process at time

I is not independent of the state x(i) after I (i.e. given the state describing the cwu*onileis in the ,

queue and the service time expended on (Ill. customer presently in scrice, sone information

about the next departure time(s) can be ascertained). As a result, no product form soluions are

known for such FCFS queues.

As fr the generalizcd M/NI/. queues mentioned earlier, we can describe a symatetric queue 4i"

by Markov process, find the resulting steady-state probabilities, and then sum over various statcs

to find the steady-state marginal probabilities. Skipping the inteimediate steps (which follow

directly from the steady-state probability distribution given in Kelly [KI , we ha~c for the non-

Markovian state X(I) -(n.c(I).(1)) (n and c() are as defined before) the steady state proba-

bility distribution

j.. 4(.i.

where l'Jz(c(j))] is the mean service requirmnent or a class c(j) customer.

For die non-Mkarkovia,i states -').(n(. (')) and xl(1) (n). we get the same

results as before with p, and p now as follows:

K

Ph kI(k )I Pi Pk
. -.
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'llhe only feature of' networks of* quasi-reversible queues that has not yet been discussed is

he routing of customers within the network. The ro(ling is formulated as Aillows: upon depart-

mng from a queue a customer of class k joins class / with probability r I By adding a sufficient

number of classes, routing can include dependency on previously visited qucues and classes as well .0.

as on the initial class. For example, a deterministic route can correspond to each input class. In

addition, routing can depend on quite detailed previous history (such as actual service times) pro-

vided that the next class depends only on the present class and that the queues remain quasi-

reversible with respect to the classes.

The effective arrival rate of customers of class k to the queueing network is

eff (k )--k(k ) Aeff(I)rA. where Mk ) is the arrival rate of class k customers fron a source

external to the network (external arrivals are assumed to belong to a Poisson process). Ihe
,A-

steady-state probability distribution of' each quasi-reversible queue in isolation is computed assum-

ing tie the arrival process of each customer class is Poisson with rate given by the effective arrival

rate of that class in the network. The overall steady-state probability distribution of the network is

the product of the steady-state probability distribution of each queue in isolation.

In the steady state the various classes of customers in the network can either:

1. orIm closed loops with no arrivals or dcpirtures, or

2. form no loops.

(Closed loops with arrivals and no departures and closed loops with departures and no

arrivits obviously cannot exist in steady-state.)

If all classes of customers formi no loops, then the effecltive arrival rates are uniquely defined

by Aeff (k )=X(k ) i- YXff(I)rk. In this case the network is said to be open and the normalizing

constant in the product forn equation is C -1. If all classes form closed loops with no arrivals or

departures then the effective arrival rates are given up to an multiplicative constant by

Xeff(k ) - 2 eff(l)r k. In this case the network is said it) be closed and the normali/ing constant

is such that the Sum of all probabilities is 1. Otherwise the network is said to he mixed. In this case

Xeff(k ) ii uniquely determired for those classes that form no loops and determined up to a con- . .'.'

stant for those classes that form closed loops.

We conclude this section on product form solutions by noting thai the same results have

t Dcpanurcs from the networ!. can be handled by dcfining a certain ch',s for departcd ctistHo, I howc~er. it

I% traditional to avoid defining a c\pilicit clivs for deparlurcS, rc ,lI in In <1 if -l,. k cuionicrs can

leave the network.

' * * -. '.. -. / J' *.I • 'l-* * • . * ,P .. . . - .* ,. .+ . . * .5 i •'
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hcen reached by othcrs. notably Blaskett et A i111. by close examination of the global )alancc 'V

eqUations in the method of stages. for certaiin cases these global balance equations reduce to local

balalice cquitions for which it is easy to determine the equilibrium probability distribulion. Kelly's

treatment via tie quasi-reversibility of the quCucs generalizes earlier work (distributions with non-

rational ILplace transforms and any queuc fitting the dcscription given earlier for generalized

M/M/- queues or symmetric qucucs can be trcatcd) and unifies it through the concept of quasi-

rcversibility.

2.6.2 G/M/I//N Model as a Queueing Network

lie G/MI,//N model can l)e considered as a closed qucuCing network with a FC-:S qucac

with an exponential service time distribution - same mean tror all customers - and an infinite server ".

as depicted below:

7,1uhlibus
-1C IS Queue i\1)o l service

Procc-.,-ors
General service

Figure 2.9: QluCing network for G/M/I//N model

All customcrs are identical. Ic! all customcrs in the infinitc server queue be class I with

mean service time Ip. I .et all customers in the I.CI:S queue be class 2 with menan service time la-

'I lus r 12 -rI I and Xel" (I) Xff(2). t:ach queue is quasi-reversible in isolation. 'Iherefore %

rm section 2.6.1 we have for the infinite server queue with a state of x -i ():

-P,
I1 I -,cf(I i

P P,

For the FCI"S (iLiCC wc ha, C or a statc of }X2- (012): %

T7f KP2 P2 X~'11(2)ti1.

I hus rfr (h1 C cr;il sC 1 .1 .1 ( 1. k ) (n1 .11): we have

".- ,". - - - %-. "-, .- - ". . .- . ,
. -- •- % % . . - , % ' % " % " % % .%". %

°
% ."% % %-% *% . - . . . . . . .%

' %P P d 'l ,,l~o .'.' ' .' "= 
a "

. " " ,/",, ,, ," " t . ' ' ." "'" - . ," - . ". -" ,'".'. -"", - ' """ ""'X." '" ' "



74 Multibus ModeLs

~Aeff(1) I,,A

WX -K K2 I l A )1

Since t I+ n2 =N, the state reduces to X =(n2 and the steady-state probability diktribution

of 112 customers in the FCFS queue is:

WX (N -N2)t , O<n 2<N

K,IAeffP 1N

and K is a normalizing constant ( K = N!

Aside from the change in notation, this equation is exactly the same as equation 2.1 in see-

tion 2.4 for the steady-state probability of 12 customers in die NI/M/I//N system. "'hereforc both

the M/M/l//N and G/M/1//N models have exactly the samc ncan waiting times per request if

the mean processing and access times arc the same respectively for each model. ('lic reader is

thus referred to the graph for the M/M/I//N case in lieu of a graph here.) "bis is a surprising -,

result considering that the processing time distribution is arbitrary. As we shall see in de next see- X_

tion. the key to this behavior is the exponential distiibution of the service timc at the FCUIS queue.

*%44
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2.7 (eneral Proessing and Access Time )istrihutions - (;/;/I//N

In this section we consider the full generality of the basic model studied so far. Unfor-

itmately. the G/G/I//N model is difficult to solve cxactly. We no longer have the convenience of .

memoryless (i.e. exponential) processing times as in the M/G/I//N case or the luck to have a pro-

duct form solution due to the exponential service time as in the G/M/I//N case. Imbedded Mar-

kov chains and supplementary variable methods are hopelessly complex. This leaves the method

of stages, as complicated as it may be. Of course, as mentioned in section 2.5, explicit closed form

solutions cannot generally be obtained with the method of stages. Simulation is also a possible

aliernative. However, simulation is not very useful to systematically determine the elett of vari-

ous parameter changes, so we leave it as a last resort. Approximation, which does not sulTer from

this weakness, is perhaps the most attractive alternative in this case. Rather than pursue it lengthy .-.

investigation of approximation techniques for the G/G/I//N system, we refer the reader to %
0"%J

I lzlachnii and Franta 11111 and Whitt IW21. %

One simple way to approximate the solution of the GIG/I//N model is to replace the FCFS

queue by either a server-sharing queue or a [.CFS queue. Both of these queues are symmetric

and the processors can be represented by an infinitc server queue as in section 2.6.2. Therefore

both queues are quasi-reversible and a product form solution exists. In fact the analysis and solu-

tion is e:.actly the same as that in Fection 2.6.2! Thus this approximation gives no more infonna-

tion than that in section 2.4. (Actually it does: it denionstrate, that under different service discip-

lines the GIG/I//N model has very -imple solutions.)

2.7.1 Neam Waiting Timne ini PII/PII/I//N ,Model

In this section we derive, using the method of stages, a solution for the mean waiting time

per request in the G/G/I//N model. Our approach is to relate the solution of the G/G/I//N

model to the solution of the G/G/I//(N-l) model (i.e. the sane model - same processing and

access time distributions - just one less processor) and then find tile solution by solving a smaller

problem based on the Solution o the G/G/I//(N-I) model. This rectuisivc approach was

motivated by the proof of''heorcn 2.2 in Appendix II. I lenIog, Woo, and Chnmd) 11121 h .e out-

lined in general terms the solution of queucing problcms by a recursive teclhniquc so the Concept

we apply is not new. Ilowever. we have not found any references in the literature concerning

recursive techniques specifically applied to the G/G/I//N system. Gencri motivaion tlor much

of the content in this section. such as the block partitioning of the generator matrix and the II I

distribution, is due to the work of Ncuts [N l.

Neuts has studied continuous tiie Markov procsses with a countably intfinite number of

,tates where the generutor mi tmix " has the 6lhr11ing (camonical) block ma.trix foIrm:

% -.

" t c rnontdiaj! ,m clcinrt'n cr" a },'t..rc )r n0:.rgx Q. ' Ibr . cccicc.cu Ihc Itcrctccc rc frcccn ' i cC

tO , iIc j Ill Ih c ; cs%,',:il t ( ' l IIlf cl t V.! , 11111 c2 \, I lc O ro t rr c r v ' ti c l;I r' c r a l .'c l~c n r ll |t' . ' a r lc I b'c .ci

,.,€ w -,w~n.- ,..,_? €. .,,. . .."..- . .,..,. , " """ """':" ": "' "' "" """" -"" " " """""" "" "" "" "
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ifq A0  0 0
B I A I A0  0 -Za

Q B2 Ab 2 Al A 0 .

where all matriccs arc inXm. Neuls [N1J has shown the following result concerning such

processes:

If the matrix Q is irreducible and positive recurrent (explained below), then the sta-

tionary probability vector v_ of Q when partitioned to agree with the partitioning of Q

has the matrix-geometric form:

wgz-rw 0R' i>0

00>
where the matrix R is the minimal nonnegative solution of I R k A* =0. %/.

k.= 
%

'['he matrix Q is irreducible if the system has no independent subsystems; that is, if all sub-

systems interact and are dependent. 'ibhis ensures that the steady state solution (if it exists) is

independent of the initial state. It is usually evident by inspection or construction that Q is irrcdu-

cible. Reqiring that Q be positive recurrent is essentially just requiring ihat the process is stable

(i.e. the queue si;'e does not grow indetinitely) so that a steady state exists. We will not be con-

cerncd about positive recurrence here since our closed system G/G/l/IN niodc %ill have only a

finite numbcr of states and we will assume it to be irreducible: thus the corresponding matrix Q

will n ecs..rily be positive recurrent.

We will hypothesi/e that the steady state probability vector of the (i/C/I/N model (when -,

represented by the method of stages) has a similar matrix-geometric form. Our G/G/I//N model

will have only a finite number of states, thus our approach will be similar to but different than

that outlined above for infinite dimensional systems. "1hie key aspect of Neuts' result is the matrix-

geometic forn of the steady state probability vector. %-%

In the following, we will use the phase distribution (denoted by PIH) originated by Neuts

[N I]. The PII distribution is really just a convenient matrix formulation of the mcthod of stages.

(Indeed, some authors use "phase" instead of "stage".) This formulation provides a much needed

qti -- ij - qA generator matrix Q has the property that wQ = 0 in the ,1cady %laie where ir is the vector

of -Acady .,ate probabilities.. ,
00

Minimal in the -. n.% that R <X (clcmcnl-wisc) for any othci solution X: R of Ak 4 k 0.
k .A

%.i'%.

%a
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structure fIm the method of' stiges and unifies many widely disparate formulations of FIalngian.

%c rics/pa ia! let. and staige type distributions. I'll distributions arie, however, a subSet (it' (hose

obtained by Cox IC41 in that all !he poles of' thc L aplace transform or a Pl I distribution are real

(its opposed to the comlplex poles allowed inl COX'S 11frulatiOnl). 'IbiS restriction to real poles

allows P1 I distributions ito be directly related to finite state Markov processes and ailows them to

be realizab~le using only real arithmetic.

A continuous parameter P11I distribution /,'(:I) on 10,00) has thc following formulation:

where T is a mi Xit nonsingular (i.e. invertible) matrix, 70 is a tit X I column v~ector, and

Te -i 'lf 0 where c is an tin XlI column vector of' Vs. T[he matrix 0 represents the generator of

a tit /-I state Markov process. T[he transition bctween any stite i E 1, 2. , tin and state j1 E

1, 2., tit, j # i, is governed by anl exponential distribution with rnie T1. Similarly, (lie transi-

tioin between any state i E 1, 2, . in and state it + I is governed by an exponential distrihuj-

v~on with rate TP (T1  - (T,-0 + Y~j) '[he states 1, 2, '.in are transient and state ti i t is
jii

absorbing. [he initial probability vector is (qa,m j ) where a is a I Xiii row v~ector' atid a, is Owe

probability of starting~ in phase i. ( gC 1-a .) n le tandomn variable x is defined a:, th' time

Until ahsom'ption in the above Markov pr'ocess. The dist'ibuLtionl Of X is l"(X ) I -- ac e ,x >0.

Th'le pair (a.T) is called the representation of' 1(x) and the dimension of the sqUai'e nirix T is

called the or'dcr of' F(x).

As anl example, a thiird order Frlangian distribution (1,3) canl bc formulated as !I P1 I distribu-

* tionl cis follows:

Frlangian:

Slig I Stage 2 Stage 3

l:Ach stage has an exponential distribution with rate it

165
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S .. .t 0  0 - 0 01'
_ =ditriuton ,,-;p

0 -)A I

We now consider the G/G/I//N model where the processing time distribution is IlII with

representation (aT), order i, and am + z0 and the access time distribution is II with represcn-

tation (flS). order v, and .v, -70. lhe states in he resulting PII/IhI/I/N m(oJcl can be
described by:

(n.sal .. . N '

where it is tie number of requests queued for or in service, O<n <N; s is the current phase of -

the service (i.e. access timc dist,'i",-Aion). I<s < v i is tile current phase of the processing at pro-

cessor i. I <I <m: and s and / are simply omitted (or taken to be zero) when there is no request

in service or when processor i is idle, respectively.

N
This gives a total of in N 1 2 vidt suites. Since all the pr('essors are assumed to be identical,

j 0

we ca' reduce the nimber of states by considering the stite description:

(,ps p I-p 2 .... ) "

where Pi denotes tie number of processors in which the piocessing is in phase i.l<i <.

0 li:5 N - i, l : - N -- ii, and i and s arc as before. This gives a toud of

N , - -N -j .- I : .fN;m-l N--iv +v states.

As an example, consider the 1:2/I'* 2/1//N system with N --3. The state transition diagram

for the system is given in Figure 2.10. The corresponding generator matrix. if the stites are labeled

in lexicographical order (i.e. in oider (0.0,0.3).(0,0,I,2),(0.0.2.1),(0,0,3,0).( 13.0.2).

given in Figure 2.11. Notice the block Iridiagon.,l form of' Q. A process having a niatrix Q of this

form is called a quasi-birth death (QBI)) process. F'igure 2.12 shows the generator intrix for the

general casc of a 111/11I I///N system with the processing time distribution of order 2, tie access %

time distribution of order 2, and N 3. Again, note the block tridiagonal fonn of Q.

V -N IV '%t.'-ft t t

%,%

L % "--



Multibus Models 79

16 - State number

(3.2.0 0) Slac rupr.cnat ion

P

15
A (3.1.0.0)

I'b

13 A14
X (2,2,0,1)(...0

12 A

AA

IA A

89 10
2A (1.2.0.2 A (1- .1) 0A.2.2.0)

°." ...

A 6 2X

3A A

1 2 2 A 4
(0.0.0.3) ~-(0-0-1-2) ~ - (0,0.2.1) - - ( )1

Iigumc 2.10: State transition diaglra for 1'21.?/l11. systen"

p.,

%p

%- 
.. U
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--! -_)Af 1 1o1

-3A 0 0 0 3A 0 0 0 0 0 0 0 0 0 0 0
A -3 ,0 0 0 2A 0 0 0 0 0 0 0 0 00
0 -3 A0 0 0 0 0 0 0 0 0 0 0 0
0 0 3A-3A 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0-2A -0 0 0 p 0 0 A 0 0 0 0
0 0 0 0 A -2A-p 0 0 p 0 0 0 0 0 0 0

00 0 0 0 0 0 00
0 p 00 00 2 0 0 0 0A -0
0 0 -0 0 0 0 A -2.-p 0 0 0 0 A 0 0

0 0 0 - 02.-2 - 0 0 02A0
0 0 0 0 000000 - - p0 ( ) 00 0 0 0 0 0 0 0 0 0 A -A-p 0 p 0

0 0 0 0 0 0 0 0 0 0 0 0 0-A- 0 A
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 - p0 A
0 0 0 0 0 0 0 0 0 0 0 p 0 0 O p

Figure 2.11: Generator matrix for "2/E 2/1//3 example

S S t 12 SI I
S1S221 ISI #112

X 3T, 0 0 3PIT? 0 0 321 0 0 0 0 0 0 00
To2 7 2T21 0 pTI2p1 T2 0 02 T? 2P271 0 0 0 0 0 00
0 2Tu2 2 T21  0 29 1T ?T'0 P2 P1 0 0 0 0 0

*0 03u2 0 0 3#17f 0 0 3P2Tj 0 0 0 0 0 0
a2S

° aiS? 0 0 1 2T2 0 S12  0 0 2T? 0 0 0 0 0
0 0 2 S als?0 T12  I T21  0 S12 0 T' T? 0 0 00
0 0 a2So aS l  0 2Tu 1 0 0 SU 0 27f 0 0 00

a2S 1OS 0 0 S21  0 0 1 2Tu 0 0 0 2T? 0 00

S0 a"2 Sa js0 0 S2 0 T12 s o T 0 0 T 00

0 0 aSass' 0 0 S21 0 2T12  1 0 2T? 0 0 0 0

0 0 0 0 a2IjSIS aipiS? 0 a2LS? aip2S? 0 z TU S12 0 TIO0
0 0 0 0 a2PISIOajpiSO 0 a2PSIOaISjO 0 Tu Z 0 S12 T,1 0

*--O--z
0 0 0 0 0 1 T2 0

X denotes Qii - Ej
J*I

Figure 2.12: Generator matrix for 1'/12/'112/I//3 system

%-%
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If we label the states in the same lexicographic;l order in the general case. then we obtain

the generator:

no 'o 0 0 0 0
A I/H CI 0 0 0
0 A)' 2 C2 0 0

Q 0 0 A3 /13 0 0

0 0 0 0 AN I'N

where:

i is it square matrix of dimension vj N - i + nt denoting the tran~sition rates between

states with i requests in the queue;

A j matrix denoting the transition rates from states

with i requests in the queue to states with i - I requests in the queue (v(i) -- I if i --I and v.

otherwise)-.

and is a v -I X -I atti denoting the Liansition rates front

states with i requests in the qtcue to states with i - I requCsts Itn the queue.

More details about these matrices will be given later as necessary. We partition thi steady

state probability vector q7. (given by wQ 0 aad '"Vr 1) into the %Cctiirs 70, V .I mtch-

ing the partitioning of Q. 'llc steady state equations are now:

nn~ I 1=0 (2.6)

, t- jC .-I + wii +,t+i A+I =0. 0<i<N (2.7)

F.V- I('N -I BWN1 Nv -0 (2.8)

One way to solvc thee equations is to adapt News' mAtrix-geonctric appro-wh. Since the %

matriccs are n1ow functions of' t. considIer ,it rate inatrix (hat is a function of t i.c. R o). .id gmcvs

that , has the forni v, w(IR()R2.1 .." Ri I )R (I ). Sbstau ting this cxpreCslo Ibr . Into

the steady state equations we obtain:

/N .I(C, I oN R(VI/,'V) 0 .

w, '('I R t)/?, R G )R 0 I). 0, 0< <N-

w(A!1o 0 RIIA 1) 0 ..
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If the appropriate invcr,,cs exist we have:I

R(N)zz - (N-IRN'

R(i)= - CA(I, l- R(i + l)Aj+V O<i<N

A solution technique by iterative %tibstitution is nlow apparent. TIhis particular matrix-product

approach is again - to the best of' our knowledge - new. Hlowever, it is at rathcr infeasiblc

approach. '11e main difficulty is pose by finding thc inverses of' the various matrices. For large N

and evecn just small values of in, and I,, the dimension of BI? for small i is very large, implying that

large dimensional matrices ["Lst hc inverted. F~inding the inverses of large matrices is coilpu tillion-

illy very inefficient. [urthermore. the invcrse of' a sparse matrix is uIsua;lly quite dense. ThereforeI

it is difiicuilt to us~c any spamrsity present in the A, 8?,, and C matrices to reduce the coinpu tational
requirements in any of' the other matrix operations. [1he non-sparsity also implies large storage

tcquiremnns. Another ditfictilt) is posed hy the varying dimecnsions of all the matrices involved:

even R 0 ) hast at sie that is at function of i. 1ibis umakes any practical implementation difficLt and

CA .1inplex s;ince the sti)[Ution l e' ach R (I*) is essentially I special case. F inailly, a great deal of' work is

required for the sA dii oll with N pro X554)15 (N iI matrix inverseN anid mnany matrix mil1tipiiCS and

Aidds) oiid i' 111.11 .111 h%: ICe)Cited if wc: .lsi) wanit th i sdiion 6o1 i r N kI proe5SoI's.

I he, key Idea i tdiv. sect ii i,,i die oh h iwinmg siliplc obhcrvadon.

St ire (0i rti hestady NIit pohbhii~i f die C;/ i/I I/N sysmem ,ii e related bit al ilillia

Cl( LI ms.urt tIl kht stealdy %tite prit h. ubhit ICs of' tie SaIrlic SySIleni will) one less processor (i c.

(.//( //,( I) 1 SpitiLl%1y. fill our SiIPtI~ N yt with staIte (",A.P .P2. p,,) and

stc.id sLtt ;trth.ihilitict, hir N piiK&cssmsi denoted hy i(N Vn~ 1,i .~p,, ) we have:

fw Iu %i X it %.p 1.i~l ittN 1~ X .' Ih It 1. t, 2 i ~tt rt Nli hes

'A lit J I i C % . r a t Ih -I odIIt l ,h l 4f (1.g .1 f1 .S il 11

I. if It, r Sll 1I l k i I IIt U I., I% W

dic 'll I' l I .1d V IW I % I it t IIlk 141 II it'11 % i.,I II A t i.11 It

P1 1 CY4Of C 11,11
%'.

.. 9) * *~ K- - .

"I~ TW'A. W ~ *.-
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Ffwfo + 'A1 - 0 (2.1 O(a))

AtrNP'('0+ N A (r NIA (2.11(b))

Assuming that Q is irreducible (which we will assumle in the rcst of this section). equations 2.10Xa) -
and .10b) rpreent N +in--I I N ,f-ni 2 , _

and 2.10(b) rprsnt -I linearly independcnt equations in the samein-I in-I
number of unknowns. If Q is irreducible, all the rows of Q are linearly independeut, and thus

BI- 1 exists, yielding r" A

N N ,, 1 and w I (CW-A 1o1)- ( .2,,.
T!io A Iit I BO _ I -IA ( BID

Finally (B I -- A I '0- also exists if Q is irreducible, yielding

N -CN-'2(B , I'O)

Let 7f,! denote the steady state probability of i requests in the queue. That is. iN N=7_.e where e

denotes a column vector of I's of appropriate dimension. Then the constant C can be determined

by the requirement that ± N.= I. Therefore we now have a rccursive formulthation for determin-
i=O ..

ing 'f A 0<i<N, for any N> 1. The Solution for N = I can be Ibtud by solving r//li-i rA I=0 0
. . ... .. -. .

and ,7k0C 0 "#- , --0 wh~ere flo is itXi)<, A I is itmX', C0 is v Xtir, and flI is 'XI'. (Note tat the

dimei sions of the matrices are flunctions of' N.) If Q is ireducible we have

E] wo- - A 1(0 'ICO) where the invcrses exist. In addition we hav: 7r 1-e /- v 1.

yielding jj(I -- (?I, -A i0- I('0) - )e - 1. This equation is easy to solve for reasonable values of

tit and v.

'11c incan waiting time for any N caln be determined by applying Little's I.aw twice, as in

section 2.3. to yield

N-I1

, I . . . .. ! (2.11)-':
(X W,N -I WN

N I N

Since the nonmail/ion st]or Iir the w ciiicek% out of equation 2.11. it is not necessiry to deter-

inen thc A,~.iit inl equ-ittu n 2.9 ;t' the 11, are just being tved to ctoml)Iite
a

1i) ,im d filte Collip i l I rI le. |itfc iencie'. ,cs^%(w'imed Ainh th immix iinctrions mnd it rt in

lithe ,id ,ul,, iuft ' r~ de'd h ! s .iP".' r ic it iis I~!)c'I It) oh\ C c[ti.tiolli% 2. Il( ld 2.11 uin11g GaIs-

-1xi ditinin.loh w ( 1AUSv. VIC41k uit',.tcm i Icc I ,1i 1 ix . ,": 1, sp.ll',c I thc' I lIihnl p. the %,Ith e t',l 1, 1,O¢410 ,.1' Nl t'(,~ (I w ill
i i il i t ' j) i~ li td l il ' h ,. r , i w * d ,i I h I' ,i . ', .} . . / ',,, .in d i hi.. l kl." C i pid, l t n ig h o i lt~ il ul il .j% '

" .~ . , .-. ~ ... .-. , iiK:.:.?.:j..:. <*'~**L*% .ycaj,
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is denoted by (,J.sJp .... P). l'lement (i.j) or/o is given by:

PI7/k if n' =-n =0, s' =s . :nd I and k are te unique values (if any) such that

i) i ,j: (iO)ij pp4. for every qtl,k, and p/--p/-- l>0. pji-p i-I<N

0 otherwise

ii) i =j: (Ho)a = - D(1O)'i - D(CO)IJ
ij i*j

'Thc Co matrix is in general not as sparse. lElcmcnt (i.j) of Co is given by:

Pl'0 k if n' =0, n -1. s' =O, si =k, and 1 is the unique value (if any) such that

(CO)j=j pI=-pJ), for every q*l and plp- 1>0

0 otherwise

The 11 matrix is again very sparse. Hlement (ij) or B I is given by:

PITik if n' 0 -=, s' =.-1 and I and k are the unique values (if any) such that

p4 =pJ, for every q *- 1,k. and p/m:pl- 1>0, P =p -r I <N- --1%
i) i *j: (11 ),jr- S u  if n i-- 11 'l . i=t,sJ=u,, pq .

0 otherwise

if) i =j: (B 1)i = -" --(I1I)ij ,(A I),j - j(COij aj

i~j i~aj i*J UW.

where

pdi o if n'= 1, n =2, s' =s j , and Iis the unique value (if any) such that

(Ci pq' =pj, for every q l and pJ= pj- I>0 ., %

0 otherwise

The A, matrx is given by: a. -

aS0a ifn i 1. nj =0. s' ==l.si =0, and ]is the unique value (if any) such that -
(A )ij - P -P1. for every q Ek and pi =p + -N ..

0 owherwiise

"11C sparsity of all these matrices depends on hc exact form of the phase distributions for

the prn:-c sing and access tiincs. In the spccial case of Frlangian scr ice. the matrix A is very

sparse. The imitrices still have iage dinicnsoln. fier ,lmr,%" V. ho now we can clictentlv employ the

spirsity of the iui.itrices to I ' ILc hoth the c'oini'pu t.'!ii al and storage requoircenets.
'4.;
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There are three drawbacks to the recursi'e approach described to dctermine the mcan wait-

ing time. Firsi, as just mentioned, tie matrices arc still large lor large N. Furthermore, the size of

the matrices is still a Function of N. Second, one cannot obtain the solution1 Ibr N processors

without investing the work to determine die solution for 1. 2, 3 ..... and N -- I processors. Some-

times this is a convenient built-in advantage. For instance, in this thesis we have continually been

interested in the solution for 1, 2, 3 .... N processors so a rccursivc solution based on the solu-

tion fbr N - I processors is not a hindrance. In fact, the recursive solution is very efficient in a

case like this since no extra work is performed. Third, as with all recursive computational pro-

cedures, small numerical errors propagate very well throughout the chain of calculations.

As a final remark, the recursive method really amounts to solving equations 2.6, 2.7, and 2.8.

It ju:;t happens that the intermediate results solve the same problem for smaller N.

p--..°

- °°

I-|
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.
."

2.8 Niullibus Model with ILong Word Acccse ,

We now extend the model of' the iLAated Mulihiis considered so far to include long word

accessei. as discussed when the processor nodel was inrodUccd. L.ong word a.'cesses are modelcd

as fi)hiows: at the end of" the processing lime interval. .he processor decides with a probability ,.

that its memory acccss will he a long word access and with a probability I -? that its memory

ac'ss will be cider a word or byte access. Ibc probability P1 is assumed identical fir all proecs-

sors and independent of the state of all other procmsors and memory access. A long word access

actually requires two succssive word acces-s on the Multibus. With the Multibus system .9'

employed in Concert, there is an interval of 6(M) to 700 nanosceonds between the two accesses

during which the processor releases control of the hus to any pending rcquests. lkcaus of the

round-robin arhitration on the Mullihus. all the pending reque-sts are served before the se'cond

,1cccs's of' the long word access. 'llerefore a ilon., word access is essentially two independent

aci'.c:,scs: (AOi to 7(XI nsec after the first word access is completed, the request for the second word

is generated and joins th, end of the queuc for Multibus service. ,

1,1 S 9.C

.,..o

F igure 2.13: Itisic Multibus model ...

,?-

%° e

I'rorcmi~ng I (IS QUeUC

Iigure 2.14(a): FxtendLd Nitltibus model
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C'miplcted B1yic. word, or Recovcry Second word
accCh firit word of of long word

long word accem .CC'

4

Figure 2.14(h): Clam transition diagram of extended Multibus model
P

'lbhc basic Mullibus model. depicted in Figure 2.13 above. can be cxtended to include long

word iccssc-s. lis extended Multibus model is depicted in Figure 2.14(a). Note that the circle

lIbeled "processing" denotes all die processor which are processing and the circlc lalbclcd

"recovery" denotes all the processors which are recovering: thcse circles do not denote indikidual

procesors. Figure 2.14(b) shows a class transition diagram of the model. [lhe details of the model % %

arc as ollows.

ILet the request for ,t hvtc. Aord, or thc first word of'a long word acss from any pr'essor

i (I <i <,V) be rtpresented h. t ,'stlmnem o1 cla,, I Jpon complction ol this access, the class I

cust i ,i er becomes either a clmss 2 cist t ier with probability I fP or at class 3 custotmer with pro-

haitility fl. Class 2 cus(oincis lelpiesclt f6ll) completed nmery accesses - bye, word. and long

word (both word tacsse) - and class 3 customers represcnt half completed long word accesses - ,,

only the first word acces. coimiplcted. Upon recciving a clts 2 customer, processor i begins pro-

cessing and after at time period i, governed by the processing time distribution, processor i gen-

crates another request, represented as a class I customer. Upon receiving a class 3 customer, pro-

ces )r i waits i recovery time I, (a random variable given by a recovery time distribution) hefiire

generalling I class 4 customer. representing the request for the ccond word of a long word access.

U pon completion of' this scomd word access (,ll word accesses are gocrned by the a e accessS

time dislribution), the class 4 customer becomes a class 2 CLIStomer and reurns to processor i.

Exactly N customers are always .mnewhere in the closed loop of classes 1,2,3. amid 4.

Conceptually there is no difference betwcn:

Mcth(" I: the pr(cses)r deciding when it generates a request that the rcqucst corresponds

to a long word access, and

Method 2: the server deciding when it compltes a word access that the access corresponds

to it long word access (and hence require's t second word access). (This nmethod is depicted ,

00 ,,%%,N,

F-
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in Figure 2.14.)

In method 2 there is no) need to distinguish between bytc or word acccsscs and thc first word

of it long word access. Method 2 therefore requires one lcess class per processor than method 1.

The proessing time random variable, Ip, at each processor is assumed to be identically distri-

butecd for all processors and independent of all other random variables. 'I he recovery time ran-

doin variable, r at each processor is also assumed to be identically distributed for all processors

and independent of all other random variables. Finally, the access time random variable, it, for

each byte or word acces is assumed to be identically distributed libr all such accesses, irrespective--

of class, and independent of all other random variables.

2.8.1 Analysis of Model %ijih IAlAig Word Accemses

2.8.1.1 Asymptolic lehaviour

lor sufficienwly large N the bus will constantly be in use, yielding a bus throughput of
la

word accesses per unit time. Since each processor cycle (processing time plus word or long word

imniiory access) rcquires an average of I i / word accesses, we obtain the throughput balance

eqtuation:

(I i)N I( _ (2.12)

where i . is the average cycle time given by:

./.. 01

I,1 is the average waiting time for a byte or word access or the first word access of a long

word

and t. is the average waiting time for the second word access of a long word.

In generil t,, 1 *t since the waiting uimc of the second word of a long word acxess is corre-

lated with the waiting time of the firs word. [or any particular long word access we have

, 2 n *MX(O. __ '" he'. .iw

III is the number of requests joining the queue after a request (for the first word of a long

word) duiring tie waiting tince t, of that request

It(/ is the number of requests joining the queue during tie actual access time aid

%.,.
MAINX I il
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recovery time (i t- I,) of the request ( or the first word)

and I,, denotes a particular sample of the access time distribution.

11W 1 f , is the total number of requests which arrive after he request foir the first word
I a ra

but bef'ore the request f'or the second word of a long word access. The quantity n, is related to

tw, and thus tw, and ",2 are correlated. In particular, i =0 only if all requests that arrived in

tw 4 I + 1, are completely served in time It. Certainly, 1" 0 is in general more difficult to attain

the larger i,, is - i.e. l = 0 is in general a stricter requirement than tw :=0. Thuis we expect IW1

and t., to have different probability distributions.

The mean total waiting time (or wasted tine) per processor cycle is 1w,. 1w, - -fl+iw. Manipu-

lating the equations 2.12 and 2.13 we have: %

IWI. = (i +p)Nt, -1p -(I +P)to --p, '€

If we normalize IW. by the mean word access time 1a, we have

...=(I -f O)N - -(I +P) --fly (2.14)-"-
'a

where a=- -, as bef'orc, and y= -i-. E~quation 2.14 describes a runction of N with an aymptotic
la ta

slope of I+fP and i knee at I+ ' - he efTect of the long word accesses, through the
1+p-

parameter P3, is to increase the asymptotic slope compared with the case with only word accesses.

'lhc knee increases with P3 if y>a and decreases with/i if y<a.

Normalizing instead by the mean memory access time Im la + P(lr- t) yields:

NT N
1 N(2.15)I,,m ,_ ( +P)+Pv ?::"

As a function of N, -w has an asymptotic slope of -_ which is always less than or equalI, I + ly+
1+13

to 1, wid a knee again at I + a +fi.
I+p

-. w r %' W I
7 j,_" ,,,
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2.8.1.2 I Delerinistic lBehaviour

Consider now the case when i, t, and ir are ectcrminisitic quantities. The maximum

memory access tienc is 2, 1., Regarding this as the access time and proceeding as in section 2.2

we obtain iT -rO for N " 1 -I. IIn the actual Multihus 0<lr< (%ec Appendix A). 'Tak-
a a,

ing O<I,<I, here, we find that qucueing must occur (i.e. lwj>O) for N> j -i -I1 when

,8>0. The reason that -wT>O under these conditions is that no request can be completely served -,

in the recovery time (since ,<ia), thus in order to maintain I--0 only one request can be

served in the entire 2 a -1 1, interval. I lowever, this is imlossiblc for N> 21 -1, hence

some requests must occasionally wait. The case with P= 0 reduces to that discussed in section 2.2,

for which no queueing occurs until N> j - - - * 1.ta

In the actual Multibus O<lrl p (se Appendix A). thus O<4r:5p. We can view the

recovery time Ir as a shortened processing time. Thus the processing time is Ip with probability .
I --fl and I, with probability / (with the restriction that ofne processing time of t, follows every

processing time of It). When N> Ip 4-1 ant f:.0. we know from section 2.2 that the bus is

;2 ~~~~/- I ' In 3z 0 eko
always busy. The following theorem shows that the bus is in fact always busy when N> 4- 1

regardless of tie value of B3.

"llieorem 2.5

Consider the Multibus model with long word accesses described in the beginning of section

2.8. I f

I) tp and I, arc dcterministic variables such that 0<l1r5 p , '

2) ta is a random variable with minimum value 1, ',.

3) N> + 1, and

4) each of the N pr(xce Ars has completed at least two memory accesses - byte. word, or

first or second word access of a long word

then the fraction of time that the bus is busy, denoted by p. is I.

X~r on:N..
% - ' -%' ' -" - '% %
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lProor:

Suppose to the contrary that p<1I. Tlhcii there must lie at least one memory request

such that the bus is idkl immediatcly prior to that reque-,t. Choose one such memory %

request. Decnote tie time at which that reque~st occurs by T and thc processor from"

which it originated by k. Tlhere are two cases to consider.

Casc 1: At timc 'T processor k just completed at processing time interval (of duration

/P,)

Immediately prior to time T -- Ip. cach of the N -I processors other than processor k

either must have it memory r'cquLcst pending (and waiting) or motst be in the midst of at

processing or at recovery period (since all processors have completed at least two

Memory accesses). Since I,</) ill] of these processors (if any) in the midst of' at pro- ~-

cessing or rcovery period must generate at least one memory request b~efore time 7.%

Tlhcrefbo there must be at least N --I memory requtests pending or generated in the

interval (7r - G1 .rJ. In order that the bkis lbe idle immediately prior to time1 7, alll ufl tese

memor101y requests muLst be completely served beflore time T. Sin'ce there are at least

NA- I of these niemrory requests. we mnust at least have (N l)i .... <ip. Or, since N is

an integer, we must have IV < - -_( + 1.

(Case 2: At time r proe'.sor k just comiirpeed a recovery time interu l (of duration '

Since the b~us is idle itmilediately p6ior to tini Te i nd t, < ~,.there canl ht- no memory

requests pending or genirated in the intcrmal IT -r 1,.). Furthermore, no memory%

requests can be pending or generated in the inter-Val (T - 1I, T). otherwise the bus . .1

would not be idle immediately prior to time T. In order that there he no memory

requests in the interval (T I, ,,. T), all the other N I processors must be p~rocess-

ing dur1inlg theC in tCerl (7- r 1(J,r ). Ihlus each of theseN piwsosmts ei

processin~g inl dh in ter' ial IT ip .r I ' J imply inrg that aM lealst N 2 mulorV

accesses occur in) lhe inters a!l IT -- IpT Ir t, 1. I herefoic at least N I nilnory

accesses occur in the initervallI 17 i,.). i.e. (N I )/,""<tGj_ Or since N is an intcger.

N_I1
<~I I ~

From Case I and 2 we conclude that ,V< is a nccessary condition inl order

that p < 1. Since by hypothecsis N> 1I1 we mu:.t have P 1.

I ~, I
% % i INR % 4 %Ii. e -00 1. 1
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Our throughput balance equation (equalion 2.12) can be written fiir general p as fbllows:

(I t P)N p
__._..,.

I * 

I 

,
We conclude from this that equals its asymptotic valuc for N > -

I + I since p - I for N in
In? '0,1

tiis range.

Figure 2.15 jlhistrates represcntative cascs of 1, /I vs. N in the dctcministic casc.

.. .:f

i m

Figure 2. 5(h): I:

Knec: I, 1 As rnl)totic slope: ,

i / i :-'%2
.w m

F~igure 2.151h1: fi I

K nee: 1 Asvm potic: slopc:

12 , 7)I , y :':. 5*9
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l'i il ' ic'. 2. (,1) .Ind 1 5h) dkcpt f (l 1 ) .111d J? I '. LtI' , el. (.V is treated xi it

L0'ii 1II(III\HI,, l. lcftc $1; I n11 a1 . I ( 11 1 m lill, 1l'(4 tim(ti ur( . irc I .c lcct( d .Nh)t ,ilso that a -- -

Ia

-C C, I nk'

and I Or Ir/1>0 AC 11,1%c tircll 's

tir yiuiptt ,, c aIe ('' umI, I,,, O, .
I I . I

-1 r IM I6 1

dsymlphow lt it. (,i smlilin, I,, >0), aInd

3. 6 )f I N > 1. cqmll s t', 'I%)Illl)to ic Value.

three ca, .,r illustrated n I igure 2.15(c). N/ -- I and I .

'p..

N N 1 Nl

%-V

0U

N,'

Figure 2.15(c): 0<,< 1

K nee: I A symiptotic slope:

The curves in Figurc 2.15(c) arc rotunded in dhe knee area dlue to Lhe randomness itroduced by

the probabilistic choice of' word vs. long word access. Because of this rotunding, the kinee cannot

always be interpreted iv the ,maxinum valu of A' for which I, F 0 can be maintained.
:..

F~inally. nte¢ that dcle'tlniis~c Ip' t .and I, ield i lower bt nd o i, . ll mn uohlk"s ,.
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tionary processing, recovery, and access time probability distributions for all N if /I3- 0 or I and at

least for N< a + i and N>a i I if0<fl<l.
2--2

2.8.1.3 Product Form Solution

'The Multibus model with long word accesses that was prsnted earlier has a product form

solution it the access time is exponentially distributed. 'lie proessing and recovery time distribu-

tions may be completely arbitrary.

ILet the global state be X - (/,,y) where xp represents the state of the processors (where

class I customers originate) and y represents the state or the FCFS queue for Multibus service.

The processors can be considered as comprising an infinite server since therc is always a free pro-

cc.or available for an arriving customer. lherefore the processors form a quasi-revcrsible queue

(with respect to a Markovian state description). The Cxponentially distributed access time,

independent of class, renders the ICFS queue quasi-reversible (again with respect to a Markovian

state description). lic quasi-reversibility of all the queues in isolation yields the product fonn:

Wxo j=

SX - x Wy

Let x- (p.,R) wiere np is thie number of custoners in class 2 (i.e. proessing) and 1R is the

number of cLstolers in clas 3 (i.e. recovering).

I ct X' - (nA4 1,1A) where AI is the number of customers in class I (i.e. byte or word or first access

or long word) and nA 2is the nuniber of customers in clas% 4 (i.e. second access of long word).

Ie( X'ff represent the effective art ival rate of class j customers; j 1 ,....4. Then from the results

in section 2.6.1 we have:

oxfffop (xJ'ff lr)"
i

.,':'q
' '

"1 r,- ,,-,.!" "

IIA P! 2 P fA A ffR!A ri1IA-1A + p 4~)! _(., +flz n~4f

PIA 1'JiA2J

Now f- A 'ff -f0A fff and Aff- (I- Pf)X f+xfW xff I. Thus the steady state proba-

bility of the global State X: (ilfJl ,n4 1,"A 2 ) iS

N 1  
11 A

... .. . . 1 6 )
/IN,!R !ItA 1 !ItA2!

Since p I'IRt 1' 1 4 1 1 1, N. we can rewritc this as:

I %I

• " ', ,' - -e ; ', e' ..' e; , , , ,' .,% , ¢ , , ; w " ,. .. ' .' .' '.. .', '. , . , ... ...
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vX=Cj N f)a"RflA)i'jn, (+.n(A, nA2)!1 2
nip n R  11A| 11A4

kff- c N

for some normalizing constant C 1(C

'The mean number of requcsts for a bytc, word, or the first word of a long word access in the

FCIFS qucue is

iA, 1 "A x hi +,,R +n1AN - A,

f, I=0 n,=O n,=O nA =0

Similarly, the mean number of requests for the second word of a king word in the FCIFS queue is:

I 12= iIA 2  WX H~lx lP +.11R + 1 1A I=N-11A2
A 2=0 n1-0 nl 0 A - =0

Clearly ,A,= 11.4 when fl=1 and 11Az- when fi=0.

If we let the global state bc .X'=(n,A 1.,A) then -,

,,X,::(.(N -- nf nN,tA 4,)! 4" 1 " ".14 "I. A) ,'

Irp =0 nR.--O nI'IAIDIA2!,4! (N-n,-InA2)!

=C'(a + fly) N A -2 (I4! (11A ,) A 2
(N - nA ?1(A2)! 1A,1!A !n

"A,'

c( N- 1  A22 JA +A 11A1"A , "IA2 N - 11A , --1A , a + P-t a"A ++ .) 1."

us

ItnA4 (1EA +n1) X "A2

1 AzC NM A ( 2 21

.A o A 1 a-fl A !(N 11 A afly' I 
1

,,

Interchanging the ordec or sutmmalion for i, wc have

jI f i~1
7A N-n 4  14 ("A + IA2)! j ,I "*'1

IE 4 ZN o" " ~ 'i!i E -i.h f fu

1A IA !1a

A

~yR P1W ,~( 4 '4e y .P -P



%  Multihus Models

= " N'!,2 O nA--l N = .4 - .1)' n , -- n

and

"A :Z (nIA,+ nA2 )! I I 1I
.... ...___ -- __ __ I

-- n (nA--l)!(N-nA,-nA)! a+fly
P IA 2=a~A 1O .0 A,(h-I)N

Nb IA 2  j2-a ((nA1 + I)4-(nA2 -- ))! "A +~

"n#A= 4I Py n-AA=o n.,!(nA,-I)!(N--(nA+l)-(n42-i))! a- fly

1ly renaming nA, and nA, in the above expression for 11A we se that nA, =011A ,. as oic might

have expected (naively) from the OUtCL

If we let X -(np,1R .1) where H, is the total number of requests in the FC'IS queue, then:

a (I () )' N =(IV(l + ,) (N -s.)! N!q 3)-- N!

x ip! pR np1 nn (N -n,)!

Finally, if we let A ' =( ) then

WI I+/iy Ia

where

N-I

=c 0(N-,i" ! j +f~ I

Note that this is exactly the samc result we obtain in w.ction 2.4 for the M/M/I//N model if we

replacc by I_ . = ratio of mcan service requirement per cycle to mean processor time (pro-

cessing plus recovery) per cycle.

Ibc average number of requests in the queue is

j- "1 L s N!
Is C yj 11 PI - (N - n)!

and i~s "A /-I 0 0 4 1"

% .%

0/%

P E' , .." " .* ,_" _<. .., _.., . , , . .. ..:.: ,:. 'r:.""*". "" .' " " ."" "" .' ". " *', ". " ,-.... , .-. . .. -_..
*. '\ . e' M " " " " " .. s . .. , . , , ... . .j.. . .
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fly l.iutk's law: ,' . w2 = f--i.and the mrne, waiting time hr any access is

/w= jf'jj u Since XfJl=#Xfff and %--P%. we have --

/W 1, P .w
where =Aff=f$ , . (In general w -( fl) (14-.)

It is possible to arrive at 1w, = 1W2 (and hence 1A-l=P,-"2) via a simpler route. A closed net-

work of quasi-rcversible queues has the property that at the instant a customer arrives at a queue

the probability distribution of all other customers is the same as the equilibrium distribution

obtained if they were the only customers in the network (Kelly [K I). An arriving customer essen-

tially "sees" the network as it would behave in equilibrium without itself. Thcerforc cla.s I and

class 4 customers arriving at the ICI' S queue each "see" the queue as it would behave in equili-

brium with N - I customers - each see the same distribution of customers. Iloth classes of custo-

mers thus have the same waiting time distribution.

)enoting the probability that the FCI-S queue server (i.e. the Multibus) is busy by p, we

have, again by Little's I aw. p. - "Jf . "rhc bus utilization p is given by p= I-" Cyl Therefore

, IN -,-) IcI- as -

This is the same result as obtained with the M/M/! IN motli when, as just noted above, we -

replace a=P- in the M/M/II/N model by "1ierefore is asymptotic to

N - - I for large N (at least in the case when all processors are identical and all the

queues are quasi-revesible in isolation). Since in this case we know that Ia = t- 1-- it is easy to

confirm this asymnptotic behaviour. Fquiting throughputs for large N we have:

(I +p)N I

/P+I+ 1 1 "+ I-*wI -fa) 'a -

and thus -- N - y__- --- I. for large N as deduced by comparison with the result Ir the
la

MIM/I//N model.

Since t., = -, the mean total waiting time per processor cycle is simply i, -(I i P)/-.

Although /-w, is more meaningful than , as an indication of throughput degraddation, we ch(x)se.

W'~*~* ****** * **.-..-. --- ,:
.',- %,

%:%.
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to give the results in tcrms of' i, for three reasons. First, as just mentioncd the two arc trivially

ielatcd by a multiplicative constant. Second, 1. or more specifically. unifies the results of the
la

current model with the results of the earlier models and facilitates direct comparisons. 'lI'ird, the

asymptotic slope of iw is independent of all parameters except N, unlike the case with 'W-r . "Ibus

graphical results for i can be presented without the possible clutter created by asymptotes inter-

secting.

Actual measurements (sec Appendix A) indicate that ta = 1.04 psec for reads and 1.06 Jsec.

for writes and that r =.65 1Lsec. Taking t. =1.05 Jpsec and 1r -. 65 scc yields 1 =.62. The

minimum possible value for ip is .60 or .70 pseL with almost equal probability: thus a>.62. Fig-

ure 2.16 shows / vs. N for various combinations of a>.62 and O<P_1 with y -.62. Note

that with .8 0 tie model reduces to die G/M/I//N model.

The mean waiting time per request is very sensitigc to the value of P8. Indeed. since

I (since a>y). the knee of - varies from --.--- -/ 1 to a . 1, which
+#2I ( )a 2

represents close to a 100% change in I- (with respect to t, for /1 1) for large a.

2.8.1.4 Simulations

In this section we explore the case when the access time is not exponentially ditributed and

thus the solution does not (in general) have the convenient product torm as in the previous ;ec-

non. As demonstrated in section 2.7.2, exact results could be obtained by the method of' stages.

However, this method requires substantial work and does not yield great insiht. Approximate

results could be obtained by a diffusion model as in Halachmi and Franta [iII] or by the methods

discussed and referenced by Whitt fW21. While such approximate results can yield a great deal of

insight, they are more difficult to obtain in this case - due to the complexities added by long word

accesses - than in section 2.7 and they are, of course, just approximate.

In order to obtain a qualitative uLndcrtanding of the effect of different processing time dis- -.

tributions on the mean waiting time per request, we simulated the system with different a and P,

parameerws for different processing time distributions. The access time distribution was kept deter-

ministic throughout to approximate the actual Multibus access time distribution. [ic error in this

approximation is presumably quite small since the variance of the actual access time is small (see

sction 3.3 in Appendix A). The results from all the previous models lead us to conjecture that the %

mean waiting time for a given processing time distribution and a given mea',n access time is minim-

iied by at deterministic access tinic. Ihus the mean waiing time with the actual ac.ess time dist- ri-

bution will likely only he greater. The recovery time disiriutionm %as also kept deterministic

throughout.

'....,

V..A.-' %

A JL . . . . F %'% °. .. . . . Y.
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Three different prm:cssing time distributions were considered: third order [Frlangiall (i.e.

I3). cxponei;tial, and third oidr hyperexponential (widi parameters al -. 6 a2 -.3 a3-1 anda, a

AI: A, X2-- AA. A1 -. IXI where/I,) - -- --- I - ). The chief diflkrencc between these dis-
A I A 2  A3

a,,

Iributions is in their coefficient of variation defined as ( ' - The coefficient of variation. C,/p

is a measurement of the amount of variation or randomness about the mean normalized by the

mean. The fibliowing taile gives C', for the three distributions considcred.

Processing time distribution Coefficient of variation C1,

Fi -laigian (/,'3) =73*

Exponential

lypercxponential (113. parameters as above) = /i.13.178

The simulation restilts for a - 1.0. 5.0, 10.0 and - 0, .5, 1.0 are piesented in F'igures 2.17,

2.18 and 2.19. Note that the wcrtical i!xis is the m'an waiting time per access for m), access - i.e.

the firt4 or second word of a !ong word - denoted by i.. We found in general tiut t, 1."<1.

where i, and i, are the mean waiting times for the first and second word respectively. Ihe'."

dillercice 1, t, increased with N w,,d approtachefd a colstant as the mean waiting tine 5"

approached its asymptotic value (interestingly, /W=-~ 2-). These findings are consistent with

the discussion in section 2.8.1.1: the waiting time for the second word of a long word access is

correlated with the waiting lime of fle First %ord of the same long word access.

,

"t..

, , < .: , .: . , .-, .: - .: , .: . -. -..-, ..- ., . . .. .. . .... . . . . . - ... . . .. . , . - ,

' ,", , , ,'." " , .'. ,. ..... .. ,.";: ..,......'..-..'...... / .. .'..'..'.....-.-.. ....'...... ,./ ...'..' - :..'.,. ..-.;,
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A carefil examination of Figures 2.17. 2.18. and 2.19 reveals th~t for any given a and I? the

curves differ only in the knee area. In each caLse, the mean %:iitiig time in the knee arca is leA

ir the I rlangiao distribution and greatest for the hypcrcxponential dish ibtitiom. his finding i% ...

consistent with our findings with the previous models: the mean waiting irne in the knee area -. "

generally increases as the "randomness" of the (processing and acce-s) distributions incre;ases. In

each case however, the change in the mean waiting time due to the difTcrent processing time dis-

tributions is much less than the changc due to different values of the parameter /. For example.

for a --- 10.0. the Friangian curve is at most about .2 below the same curve for the exponential, and

the hyperexponential curve is at most about .5 above the same curve for the exponential.

'The difference in mean waiting times effected by exponential versus deterministic distribu-

tions for the access time can be ascertained by comparing l'igures 2.5 and 2.18. Ihe difference in

mean waiting times is greatest in the knee area of' the curves and increases with N, as observed

with the earlier models. For a - 10.0, the difference is at most about .70. Changing Pi from .5 to

1.0 results in a change or at most about 1.5 in the mean waiting time. lierefore. for the distribu-

tions considered, the mean waiting time is more sensitive to the value of /f than the form of the

distribution. Indeed, the value of fl determines the asymptotic value of the mean waiting time and

the location of the knee in the mean v-aititig time curve. [he processirg and access time d;strihu-

tions just determine the "sharpness" of die kne.

The above discussion suggests that it is best to suidy the factors influencing die parameter .,,

while perhaps assuming analytically ractable exponeniAl distributions far the pioc(:s'sin3 and

access times, befrre studying in det;ail the etffct or different distributionls. *.

... -

,*4 **4

J.o%

,:Z:

%' %
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2.9 %tulhi% M1odel milli l.0j Word amnd Ringbs Act-swi.

Ini 01 is'ectio~n iliv Mitihiis ni141 ide disto%'cd -.A Car is intcrfa':cd with thle H itghtis. As

des' lifted tI 'KClt(II 1.2 S 'AC h1.i1' (lev..i-potsed the oxe.iIl Concert i-itdi'I init) two ivitdlk - the

N idlibti% and the H inghus - to iake *in1.tlysis tracLible. Wheii anial / ing one model. tile operation

of' die odier is rclaLcd by an 4- i~.Ient Itimped inoduI. Ini this section we replace tile Hinghus by

Its eqtui~aknia access timec di'trihwtn. Ili thc sequel we wil! be interested in approxiiniting thc

Hi nghus acce-ss Jtie JistrihuLit0l bny oinc AiLh ,i small n UMber of' parameters (in particuilar at single

p.imalmiter) soi that wC Lan CaIsily solve Ijir the interaction between thle MUltihuS Mnd H inghus

mollCS. 1-Il r C n weonsidei thle Hinghus% *cccs,i tiei distribution to be general and un1SPCI-iied.

We cII extend die Mtijbus modcl with long word accesses that was developed inl section

2.9 vi in lode H inghtus acesses. We regard a H irghis access as Occurring with prolbahility 4'and at

M ltNiuS acceSS JS (twL ri lig w itl piobhblity I 1 o':ttherw ise the, myodel remains as in section 2.8.*

Actually. any Hinghus access begins as a Multibus-access. The Ringbus, iiiterlace board (RIBI)

deciciut's111v which Mtiltibus accesses ire permitted to uSe thle h iaghuis based onl the address at

which tile read aind/o r w ric is to he perE irmed. Recall fromn section 1.3 that we termi a mnemory

operation - read and/or write - that OCcUrs in the Ringbuis address space (i.e. requires the

H .1gus a inghUS .!C-CSS. Siini Li l . %e c..l 1 a memnory operation that OCcurIs inl tile Nilttibtis

addrcs; space (i.e. doecs vot require any portin of thle iigts Multb ths cCUS. '[iS

Ringlhus access requires, iinxtcrship of' the Mult'ils but taie wctwl access ocetti's in the Ringbias

add ress space.

'[he new modlel cin be de:,cr ibed more pie( iSe-ly by intioJucWing clasSCS Of eUtisOinrS As inl

section 2.8. We now% require at total of' scen classes: the classes I throughu 4 are the sanme as in

soectioii 2.8.

Muiiihuuaccib,.

1rucemi~ng

Rccover) aftcr i

inghiN aitcems acccss

I'iguirc 2.2(X.0: Miultibus m nodel 'A 1t1i R ingbtus accesses
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Multibous acccs: Rinl'hus Iccex:
bytc. word. or it se.'ond word of

word of a long word Rccovcry a long word

4U

Ringba acclsl: Rcovery Rido ghus s hi h.:
ycr . word, or irst aog ond word of a o

word of a long word a long word

Figure 2.20(b): Class transition diagram e.,

Figure 2.2C(a) depicts trc new nome r and Figure 2.20(b) shows a class transition diagram. As in

Figure 2.14 in sction 2.8, t~he circle in Figuire 2.20(a) labeled "processing" dcnotes all processors

which rc processing and the circeics labled "recovery" denote dte processors which ;ie meCr.'-
ing. p he details of dhe mudel are as follows:

sct the rcquert for a byte. word, or the first word of a long word access from any procesor%

be represented by a cusbomer of class I for a Multibus access or by a customer of class 5 for a

Ringbus access. After a class I customer completes its access, it becomes cithcr a class 2 customer 0.

with probability 1 -8 or a class 3 customer with probability P, and returns to any fre processor

(all processors are considered identical). Class 2 customers represent hiully completed memory
acceses- bteword, and long word (both accesses) - and claiss 3 Customers re rcs'211( half corn-

plctcd long word Multihus accesses - only the first word completed. Uponi receiving a class 3 cus-

tomer, at processor waits a time t,. given by the recovery time distribution before generaiting at class

4 customer, representing the request for the second word of a long word Multibus access. Upon

completion of this second word access, the class 4 customer becomes a class 2 customer and

returns to any free processor.

With probability 1 - 4, this request is for a Multibus access and is represented by a customer

of class 1; with probability 4i this request is for R1ingbus access and is represented by a customer%%
of class 5.

'I

p

," ," .,. ...,a, . "a'. *" " " '",, .'.- . . . % , '"'".- , *% ".-'."* .-- " " - -'. -..", -".ce .. €
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After a class 5 customer completes its access it bhcoines cithcr a class 2 customer wilh proba-

bility I --P or a class 6 customer with pr(Pbility If. and returns io any free processr. Class 6

customers represent half completed long word Iinghus access - only the first word conpleted.

Upon receiving a class 6 customcr, a processor waits a time ,r given by the some recovci y (iime dis-

tribution as before and then generates a class 7 customer. representing the request for the second

word of a long word Ringhus access. Finally. upon completion of this second word access, the

class 7 customer becomes a class 2 customer and returns to any free processor.

Customer classes 5. 6. and 7 are completely analogous to classes 1, 3. and 4 respectively,

except that the former relbr to Ringhus access and the litter to Mullihus accesses. Ixacly N cus-

tomers are always somrewhere in the closed loop of classes I through 7.

As iti our previous model, he processing time distribution is identical for all processors. and

the recovery time distribution is the same for all prThsrs. There are two separate access time

distributions: one for Mutihus accesses and one for RingbS accsses. The Multihus access time %

distribution is the same for all byte and word (first or second word of long word) Multihus -

accesscs and the Ringbus access time distribution is the same for all byte and word (first or second 10%

word of" long word) Ringbus accesses. We denote the acces time of a Muhibus access by the ran-

dor variable Iamb. and the access time of a Ringbus acces. by the random variable i, rb. The ran- ,.

dom variables p, 'Ir, tn,,b- 1ub are each assumed (o be indemdch. ot '(her random tariables and

independent of all classes.

2.9.1 knalysis of Mullibus Model with Long Word mnd Rim Ihus Accesses

.9.1.1 Asymptotic lkhaviour • "-

"llie Multibus throughput is now where p is the fraction of time (i.e. "...-.
(I- -"

probability in steady state) that the Multibus is busy. The throughput balance equation is thus:

(I -/ )N p1.7)-'

where a is the average access time given by 1, = (l -'1 .')1 -f 01,,R/1 and 1., is tie average cycle

time given by otc = IP + #- , + Pi+Iw 1,1 a.)

As in section 2.8, 1i, is the average waiting time for a byte or word access or the first word.*%

access of a long word and t- is the average waiting timc for the second word access of a long
word. Now however, 1,. and 1,, refer to diJe a~cragc w,iitin- time of both Multibus and lRinghus
acces . I is certainly possible to part ition I and 1 e2ach into one component for Multius

'd,.

, ,,-..,

%--, ,*. . . , ,"
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acc sscs and another for Ringhus accesseis, but we choose to continue looking at the overall wait-

ing time per requcst. Note that in general. 1.l1 :1 w/2 as discu cd for the case in section 2.8.

'1 hc mean total waiting time (or wasted time) per procssor cycle is ,, ', I i-PI. Combin-

ing this equation with the equation for l0, and equation 2.17 yields:

N -

As discussed in section 2.8. we choose to nomnalize /wT b) the mean memory access time

, 'a + P(Ir -i i,) in order to retain our earlier interpretation of the knee. "lus

N

Im +- f- - IiT + (l+ P X l+ O ( - )) ". 8
'p i+ _( ____+__ ________

where a .7- - and-'aRM
'omit 'oAf P aM

As a function of N, WT hs a knee at + I and an asymptotic slope of
I, (1- pxI I (--))

1 WT
which is dways less than or cqual to 1. As N-oo, P l, so -_ is

(1 + Pxl i (r - I)) 
,

asymptotic to equation 2.18 with p = 1.

2.9.1.2 Deterministic Behaviour

Consider now the case when 'p, Ir, lamb. and larb are deterministic quantities. 'ITc max-

imum mcmory access time is 21.,b+i, (assuming that Iat>Iamb). Ius IwT=O for

I I 
U=l l -N e ar l sN< 1 - - 1 N/. where NI/corresponds to the knee when.fi land 4,= I.

2 t'arb + I, 2 -

Ibe following thcorcm shows that the bus is busy khcn N> laMB I 1Ia + I N regardless

of the value of P and . N: corresponds U) the knee when Pi =0 and 4 =0. I.

: 
A

R.. b

.: .,.,;.;, . P -, , ,,,,-41, If,' _ I % . - '.>..'."."-"-.'%-.-..' -.-, .-..-,- ,-- %.,-., ..% ' :
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Ilicorem 2.6

Consider the Multibus model with long word and Ringhus accesses described in the begin-

ning of section 2.9. If IP. 'G At/• 1,,R11. and t, are dcterninistic variables such that 'r<ip,
I i |

/,>O. and N>IlI + I and if each of the N processors has completed at

least two memory accesses - byte. word. or first or second word access of a long word - then the

fraction of time that the bus is busy, denoted by p, is 1.

Proof:..

Given by 'llicorem 2.5 with a iaMfl.

From 'h eorem 2.6 we conclude that '  equals its asymptotic value for N>N. For
Im

N/<N<N; and O<fP<l and/or O<,<I. --- is strictly positive, again by an argument similar

to that in section 2.8.1.2.

The three possible cases are depicted in Figure 2.21. As discussed in section 2.8.1.2. the

curve in Figure 2.21(c) is rounded ini the knee area due Lo the randomness introduced by the pro- 4 %

babilistic choice or Multibus versus Ringbus access and word versus long word access.

;U,-

i,\.r/.,

0
N

-t.

(a): P =0 and 4,,=0

Knee: a + 1 Asymptotic slope: I

' " " - " ' -" " " " ' " . . . ' ' " " " " ' ' " " " ' " " " ' " " " ' ' " " " %  "

. W , ... .. ... .. .. ... .. ......... ......a'.. ................ ............ .... ... . ..... .... .. ..... . ..- .-.-. - - .
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0N

(b): P=I and +=I

K nee: a 7+ I Asymptotic slope:

WT M

0 -

(c): O<P < I and/or 0<,4<1I

Knee - 1P -- + I Asymptotic slope: -K (ee 0 PX I+'W'-I) 
______

Figure 2.21: Representative cases of I vs. N in deterministic case

IN ON. N* -NNN

6-P.*.
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2.9.1.3 'roduct Form Solution

"he ICFS queue for the Multibus is no longer quasi-reversihle in general, since the service

time depends on the class of the customer-, Ringbus accsses may have a diffrenct service time dis-

tribution than Multibus accesses. Certainly, the FCFS queue remains quasi-reversiblc if - 0 and

the Multibus access time distribution is exponential or if 1 and the Ringbus access time distri-

bution is exponential. lhe analysis in either of these two cases is the same as in section 2.8. How-

ever, we are interested in the general case when 0< <1. Since the FCFS queue is not quasi-

reversible for 0<4<1 (unless the Multibus and Ringbus access time distributions are identical),

we cannot use the product fiorm results in section 2.6.1 to give an exact result (no product form
solutions are known for non-symmetric FCFS queue). We can however, ind an exact product

form solution for a slightly different model than the one in which we are interested.

Consider the model presented at the beginning of section 2.9 with general processing,

recovery and access time distributions. Obtain a new-model by replacing the FCI"S queue for the %

Multibus by a server-sharing queue. (A wrver-sharing queue is essentially a round-robin queue

with infinitesimal quantum size so all queued customers are in service simultaneously.) Since the %

server-sharing queue is quasi-reversible, this new model has an exact product twrm S6lution. We ,

will now dcrive the exact solution Ibr this new model and us, it to approximate the solution of otir

original model with a FCFS queue.

Iet the global state be X_ z-(X,,y) where x , represents the state (of the processors and y

represccnts tie state of the server-sharing queue for use of the Multibus. As in ,cion 2.8.1.2, the

processors can be considered as comprising an infinite server and thus they form a quasi-revvisible

queue (with respect to a Markovian state description). As mentioned earlier, the server-sharing

queue is also quasi-reversible (with respect to a Markovian state description). 'le quasi- "

reversibility of all the queues in isolation yields the product form:

1 X =Wxruj,

I .et XP 2,113,10 t) and Y z-(n 1,1 5 :n 4,n 7) where nj is the number of customers in class i. I.et

Ai"ff represent the effective arrival rate orf class i customers. Then from the results in section 2.6.1

we have:

(n 2 P:fl4 - n({~IR 3 e(AffAi n 6(f~IR

(111+11 t!5 
+ 114+11t!7)! ofnr- 04t rff. 07

Now kf (.' -A -fff X ¢ff, A f-A 'ff--lX 'Lf. XrftX -(I - ,)X ,- and X - -A If.

.%%
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Simplifying. we finally obtain:

(aN (fly)N*(nA, i PIA) )(l _4 ++ ) N I + A~W2

• X =  - - - - - -- , -, , , - -(2.19)
nPapI~t N'A1

1MA2

where np n2, n ft =n 3 *M nA tonI i n 5. and nA -- 14+17. As before. a=-- -- - ,
'aMS 'aMR

and l'= - . Note that equation 2.19 is exacdy the same as equation 2.16 in section 2.8.1.3
1aMfi

except for the (I--i, ' 2 ) tenn. We can imagine a similar term in equation 2.16, i.e.
i(eet+ of i%'e

and thus both have exactly the same for.

Using the results of section 2.8.1.3 we immediately have:

1) the steady-state probability of a total of n , O<n, <N requests in the queue is

N! I l A )l _. J. + ,.) I'''-, '-'

Pr"b(n, in queue) (" N ! 0 I•
(N - ##I) aO

where (' is a normalizing constant

1~ 'Nl (I #-PX -~ 0 J
3) - I -I n j - I whcre1 1 -C(N - pi,)! a -017

Points (1) and (3) are the same results as obtained with the M/M/I//N model in section 2.4

(equations 2.1 and 2.2) when a - in the M/M/I//N model is replaced by - --- +p -

0 (1pxl I - 0

Therefore with a server-sharing queue. is asymptotic to N -- for large N. ..a 0 + P X 1 4, 00 ).,::',
/",' (I + (P) + I "

Point (2) implies that I -(1 tP)/,. 'Ibus -- Vf).'w.

' l+8 " Py la""

To gauge the accuracy of the result for dhe servcr-sharing modcl as an approximation for the ".-.::
original model, consider the Multihus model with long word accesses in section 2.8. lhe product
fonn solution of this model is exactly the same for FCFS and serxer-sharing disciplines at the Mul- %

tihus queue. However, the product form solution with the scrvcr-sharing discipline is more

comprehensive: it is exact fo' gc'ncial distributions for the pr(N:essiilg, reco. cr>. id access times

(i.e. it is not limitcd to an expoitential acces; time distribution as with the "('I.S discipline). Since

-. % .*.]
' ' , " " ", " " ' " ' ' ' " " % e 

"
, . ,""* . .e• • . . . . .o*- " . .. . " " " . - - - . .-.. , ,
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the product form soltition i:s the samne for 1CFS mid server-sharing disciplines, the simulations

reported in section 2.8.1.4 may he used to determine the accuracy of the st;lution t(r the ;crvcr-

sharing discipline in approximating the solution for the I,'IS dis'ipline. We reach the same con-

clusion as in .,ction 2.8.1.4: the approximation is excellent except in the knce area and in general.

twit. In the knee arca. it., with the server-sharing discipline is t( large for %)ne processing

time distributions (tho c with (', <I it seems) and too small for other processing time distributions

(thosc with (P > I it seems). Fxtrapolating. we expect roughly the same tie accuracy of our

server-sharing model in section 2.9.1.3 as an approximation for the original ICFS model. P_%

It is important to temper the previous scnlencc with the observation that we are basing our

extrapolation to the case with general Ringhus access time distribution (of possibly large variance)

on the simulations performed for deterministic access times. I lowever. the accuracy of the %erver-

sharing model will likely remain very good except around the knee area where we expect the

greatest inaccuracies to accrue. We have chosen not to perform any simulations to determine

further the accuracy of our server-sharing model. The rcasAn is Ihat, as in section 2.8.1.3, we

expect the mean waiting time to be more sensitive to the values of the parameters, such as ,1 and

g,. than the exact form of the probability distributions. 'llierefore it seems hest to study the tac-

tors influencing the paranieters before studying the effect of die prohability distributions.

2.9.1.4 A Special (ase

In the special case when the processing timc is exponentially distributed and there are no

long worI accesses (i.e. (I -SO) an exact result for the average waiting time per request (:an be

ohlained tlore the N/G/I//N results in section 2.5. Since there are no long word accesses, we

can combine the Multibus access time and Ringbus access time distributions into one access di,,tri-

bution. Specifically, if the Multibus access time distribution is Prob('amb 5) 1"mb(l) and the

Ringhus access time distribution is Prob(arl b )- "rb(t), then the overall access time distribution

is I's (t) - (I - F)"am!,(1)4 1',.b(I ). The average waiting time i. can be determined h) applying
00 . 4oo .'.'.s

the formulae in section 2.5 with I" (s) f e -T' ,n.d,(x ). " %
0 i

2.9.2 '[he Single Processor Fqui.alnt of tie Multibus

As discusscd in section 1.2.4. we ha~e decomposed the ocrall model of Concert into Mul-

tibus and Ringbus models and when dealing with one of these models. we replace the other

models by equivaClut models. Up to this point we have examined the NMultihus model: we ha c

assumed some Ringbus access time d,.tribution md detcrmincd the perflrniace ot the Nluhtbus

mo0del with that distributien. NOW %%c e.,uivc the N inglc prc',r ,qurll.kt modcl )t' the

%i+=l

Jr .l
.. v",/ . , • .. - ... .., .. .. .. .. .. . . . .. .. . ..+" .. ,-... + ; .. - _ . € = - . . . . .%.,,,> _, ...._.. ..+... ,_..,, ..,_...., -, 7N. ., , , ....
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Niultibus.

Thc single processor equiivalent of tie Multibus is chazracterized by at processing time distri-

bution, Ringhuts destination probabilities, and Pf-- 0, 4, I (as dibcusscd in section 1.2.4). '11e pro-

cessin~g time distribution presents the most dilliculty - we must find die probability distribution of

the Ringbus spacing.t Ihce Ringhus destination probabilities are trivial to determine. Since we

have assumed that all processors in the Multihus mfodel arc identical. thc Ringhus destination pro-

babilities for the entirc Muhlihus arc the same as that for one processor. [blus the Ringhus de-stina-

Lion probabilities for the single pr~cesso)r equivalent, denoted by p2 ikl arc given by
Alnc Rei vp, for all i. where the Ringhuis destination probabilitics for each processor in the Mlul-

tihus model arc denoted by pi.

Thc Ringbus spacing probability distribution is vet y difficult to find in closed form. Instead,

we choose to approximlate the Ringhus spiL.ing distribution by another distribution with the samie

first moment. We could also usc higher moments in the atppro~ximation of' the Ringbtis spacing

distribution, thcey achieving greater accuracy. I lowever, higher mnonients arc progressively more

difficult to obtain from the Multibus model. We therefore choose to stick with our simple first ~ ,

moment approxinmation and evaluate the results before considering more complex and accurate

approximations. Indeed, the results so obtained mray be suifficiently accurate that more accurate

approximations are uinnecessary. To ease analysis, we choose an cxponenitial distibutimi. which is

complctc!y paraincterizcd by its first momeiit, to approximate the Ringbus spacing distrib~ution.

Rccall from sction 1.2.4 that the processing time probability diibution of the single processor

equivalent is eqlual to the lRingbus %pacing p roba;)lity diiribtation. [buos we have just approxi-

miated the processing time distribufion (if the single processor equivalent hy in exponential distri-

bution. Let the mecan or this distribution be denoted by -At~
1P - %q

The Ringbus access time distribution is also very difficult to find in closed form (as we shall

see in Chapter 3). For the same reasons ats above, we choose to also approximate dhc Ringbus

access time distribution by an exponential distribution. Since both the processing time distribution

of the sitigle: processor equjiv:ilent ajnd the Ringbus access time distribution are thus completely

specified b their respective first moments, integrating the Multibus and Ringbus models reduces

ito firit moment matching, rather than the (conieiaably) more difficuilt tsk or matching continu-

ous distributions.

Wc now dectermniec the mean processing imne or the single processor equivalenit of' thc Mul-

tibus in terms Of MUltibuIs parameters. [he mean time between initiation or Ringbus aces~ is

+M11R. This mean time is al Iso) given b -- - where.1P ~ f b (I + fl)N# .

t I'i Sectiof 1.2 4 %c f illed IhC R r ,h J arinle to be Inc iterla hciw cii tile c0,11tp!chlol of one acccss on%

%~ %~$ %N
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"C.K 1 -. 1 I-, t( - tj and t ,-- (I--4,)t,,l Fl,Rjj. Th Ius the mean proces.sing time

of the single pncessor equivalent is given by V,,6

- Mlkqv "1-___
(1 i-$)NV , aRfi (2.20) ,,

To proceed furthcr we require a rclationship between 'wr=-w1,*  2 and the Multibus

paramcters. We choose to usc the exact rCsults for the scrver-sharing queue model developed in.

section 2.9.1.3 to approximate the general case. There is, of course, some error involved with this

approximation, but at least we have a convenient result expressing the relationship between 'W-

and the Multibus parameters. As discussed in section 2.9.1.3. the servcr-sharing queue model l,

should give fairly accurate results for %w except around the knee area. Substitutilg the equation ,P.,

for [,,, into equation 2.20 we have:

- +I I

- ' - - -.(a+fly) la-- + 1a, Ia =,,n + (1-0 / + '0 I,
(1 fi)N4 N4( -R( )N + N i,

where - is the mean waiting time per rcquest for the M/M/I/N model of section 2.4 (cqua-
la

tions 2.1 nd 2.2) with -'A (V
X (I -PXI-- +,/,)

+#By I-__For small N , -- =0, and thus +/l,,, - t'(l - 1
la /p lam, Il+ N# 4, N .r

[,Mfleqv is approximately linear in ' for small N. For large N, =N- -I ,i-)
ad thu Mlkqv - (1-il)"--

pdthus --- a constant.

As we shall se in section 3.9.1, we need one more quantity from the single processor

equiv dlent of the Multibus whcn we integrate the Multibus and Ringbus models. This quantity,

which we denote by IRI, is the probability that at the termination of a Ringbus access. the Mul-

tibus queue is noncmpty and the request at the head of tie queue is a Ringbus request. In other

words,

PRB - Prob(a customer departing from the Multibus qucuc leaves a Ringbus request

at the head of the qucuc I the customer departing is a Ringbus request)

the Mullibus with a Ringhus de .onion nnd the staie of the ticxt such acc-s; on the Mullibus. %

%?'.' v

.vY.*t
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A closed network of quasi-reversible queues has the property that when a customer of a

given class arrives at or departs froim a queue, the other customers in the system are distributed

according to the steady-state probability distribution obtaincd if tiy were the only customers in

the system 'lhcorem 3.12 of Ref[ Ki1. "Ihus PRI? in the server-sharing queue approximation or the

gencral case is given by the steady-state probability of the customer in service - i.e. at the head of

the queue - representing a Ringbus access in a N - I processor system. (N is the number of pro-

cessors in the original system.) We denote this probability by oN - I. Let pN- denote the

steady-state probability of there being any customer in service in a N - 1 processor system.

Using L.ittle's Law we have pNB K X ()aRB and p P-ll z O/IN-I). From section

2.9.1.3 we have

AjqI/N - 1),)_x rff(N -% xjsfN- i)i,.

'(l + 1 )lfff( -1)

Xe/ Nv- " : ,pff t'- ' '+\ (N: -1) TfPNY (/ - I + ,x fff(N -1 ) ..

=(1+ fAJ (V - 1) .--

and

1. =W( 0 ,)+ O'/,i,.n..,M,,

Thus

N-I= Oa~RI N-]= N-V
PRO - l P

la~l

We have already noted (hat the server-sharing queue model in section 2.9.1.3 has the same

solution for i /Ia as a M/M/I//N queue model with E T same holds
X (1 +Ix I - + +')

fir the probability that the server is busy. That is, pN-1 is the probability that the server is busy -? .%

in a M/M/I//N-I system with - f -. Finally,,-.
A (I+1X-- f'*0 i " L-

A %p

,. .. * -

+ i : • + .. .. .. - .+ ,+ +, ++.-: ', i" .':<
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2.10 Exlensions

The Multibus models considered so far have four main weaknesses:

I. All procesosrs are identical.

2. The processor nodel is very simple, perhaps too simple.

3. 'Ie processor model is stationary, i.e. time independcnt.

4. All pr essors arc independent.

We assumed points I through 4 in the previous sections to obtain simple and analytically

tractable models. In this section we consider extensions to relax each of these assumptions. /.,

2.10.1 Non-identical processors

This casc is siraightforward to handle by simply adding more states to the Multibus model

to represent the different combinalions of non-identical pro-essArs. For example, we can change

the state description of the M/M/l//N model in section 2.3 from (n). where n represents the

numuher of requests waiting Ir or in service to (n,C1 ,C,..,c . where n is the same as before %%

and ci represents the processor from which the i request in the queue originated. In a sense, we

now have N classes of customers (for N processors) where there is one class per processor. Simi-

larly. we can add classes to the Multibus model with Ringhus accesses in section 2.9 to distinguish

the respective processors at which requests originate. For example. we could chose the classes

7(i -1) /-1, 7(i - 1)-/ 2, , 7(i - 1)1-7, I<i<N, where i denotes the originating processor and .

7(i - I)# 1, 7(i I)i 2. . 7(i - I)+ 7 represent the 7 classes (as in section 2.9) associa!ed with

the originating processor i. A product form solution, birnilar to that developed in section 2.9.1.2,

can be developed with respect to these classes.

Since the processors are now non-identical, the mean waiting time per request, I,. is not

necessarily the same fir the requests of all processors. This complicates the calculation of the

throughput. It is probably best to consider the mean waiting time per request from processor i. for

all i, rather than the mean waiting time for any request givca by I-.

Note that while the case with non-identical processors is straightforward to handle. die state

space required and the complexity of the analysis increases without necessarily contributing much

insight.

2.10.2 More Complex Processor Models

This case can again be handled by increasing the numler of states representing the Niultibus

model. Wc assume in this subscction that the proceisors ire identical, independent, and stationary.

I hese assumptions can be relaxed by the iiehods discussed in the preccding a id succeeding sub-

sections.

%",
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Within the assumptions slated alove, we can make the prtx:esor model arbitrarily complex %

and. provided that we cal ind a Markovian state dccription of the prxessor. we can auigment

the statC of the Mulltihus mIiKlel with the slate of each pr ,sso)r model aund in principle solve for

the steady-state prnbability distrihution. Once we know the steady-statc probability distribution we

can in principic deteminc any related perfolrmance measurement of interest. '1bc difficulty, of

course, is with the "in principle" part.

One quite general way to proceed is to approximate the entire Multibus model (including the

processor models) by a queucing network model with a product form solution. One advantage of

this approach is that we can deal with the model at a more abstract level. The states need not bc - -

Markovian: it suffices that each queue is quasi-reversible in isolation with respect to some Marko-

vian state descriptioti but w; need not find or deal with such a description. A second advantage is

that we can obtain analytical expressions for the steady-state distributions and hence ror the per-

formance measures of interest. A disadvantagc is that inevitably some simplifying assumptions are

involved. In some cases the nccessary simplifying assumptions may obscure or eliminate the

features of interest- In such cases one must resort to other methods such as simulation. ('Ilere is a

paucity of methods for dealing with large non-product form systems.)

A way to extend the processor model using a queucing network model is to consider the

processor operation as consi:,ting of a set or activities, say A,. A 2. A,.- One activity might

correspond to program exccution in the procs.sor's k)cal memor), anohcr might correspond to

rcading or writing global data. ,ind yet another might correspond to busy waiting on some g!obal -,

memoy hkcation. and so on. (Of coursc, with our irdepcndcnce s.mnption. the period of time .,

spent busy waiting must be independent of the operition of the other pr:cesors.) Associated with

each activity is sonic interarrival time of requests for the Multibus, sonic interarrival time of .4.,.-

requests for the Ringbus, a probability distribution for the time spent in that activity, and a proba-

bility distribution for the next activity (which may depend on the previous activities and the time

in each). We can dc.-ribe the overall Multibus modcl by a queueing network by regarding the

activities ats queues (sevemal queuies may he necessary to describe each activity) and the operation

of the pro,:cssors as customers which move from queue to quetle. The customers can belong9 to

classes which represent the previous queue(s) visited, the service time at a queue. and so on (pro-

vided each queue remains quasi-reversible with respect to the classes). Finally, the transition fm-

one class to another can be governed by a probability distribution depending only on the present .

class.

a = % I

% % % % %

O.o e,

S.: '..
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F~igure 2.22: Queueing network model with processio activities "

A queueing network model fbi a LhlCCe pr(x-c,,sor s~stemn with three activities each is depicted in ".:
Iiure 2.22.'-'.

If" each quetue is quasi-reversible in isolation. then the global state prob~ability has at prodUCt__

form S011.1601. Since there is at most One Cu~sto.mer per cla. s (we assume that there is a total of one

customer in all the classes asso)ciated with a single pro:es.sor - more than one would correspond to

it multi-tasking processor), the service time disiribution at each quetie except the "CF"S Multibus :*

queue may be completely general. As discussed in sections 2.8 and 2.9. the service time dist.ribu-
tion at die Niultihus queue must either be exponential with the same mean for all cusomers or the.

queue discipline must lie serv'er-sharing."'"

To illustrate tie activity-based queui11g network model more concretely, we consider the...-

fo~llowing general case.-'

L~et there he N, not necessarily identical processo rs. Let the model fo~r processor i consist of""-'-

Q(i} queues Q' I. Q' 2- "..,i,(,) and the MuhlibuS qUCtOc (which is comm,,n to all N processors :,

m(ls), Let there be a finite set of' customer classes w(i) associated with each proii essr i. -ch-
customer class visitin at lea one qdtcie. Upon departo g from it queC at customer of sts k joins

class I with probability rall (cs r pocessor i). t Iha sn ice as ci,cd r ith prc r fom pingle

closed loop ilk dig all p e (i) qCsc iccd the itiutiotea up th c FCsS Multi r u

qucuc~~~~~~~~~~~~~~~~~ may) hccIltl cca.A icsc nscin . n .. t sCo)ieiedstiu

ti% at th Niliu quu mus cic ccpnnilwt h am eitralCsoeso
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.et there be exactly one customer in the closed iKop of classes corresponding to each prncs-

sor. Thus the service time distribution at each queue exccpt the Miltibus queue may he coin-

pletely gelieral. (In addition, any customer at a queue other than the Multibus queue must be

receiving service.) We assume that the service lime distribution at cach queue is independent of

customer class. (For non-Muitibus queues we can %imply add more queues and classes to circum-

vent this restriction.) We also assume either that the Multibus queue discipline is FCFS and the

service time distribution is exponential or that the Multibus queue discipline is server-sharing and Ile,

the service time distribution is general.

By adding a sufficient number of queues and classes, the general case just described can han-

die or approximate a wide range of activities and processor models. As suited earlier in this sec-

tion, the classes can represent quite detailed history, such as previous queues visited and the ser-

vice times at those queues. Therelre one can even have an approximate distribution for the time

spent in an activity by defining classes to represent die time elapsed in a certain activity. Obis

technique will be discussed in more detail in section 2.10.3.) By construction, each queue in the

general case just described is quasi-reversible in isolation and thus the global suite probability has

a product form solution. We now investigate this solution..''a

I.ct the global state be X =(xi., • ,_:ip ) where x1, represents the state of processor i and

j, represents the state of the Multihus queue. Then we have the product foi'm so on:

7tX -1 '~xr. • fy.'".

Let xl, -(qil, ''',iN) where .q'j denotes the suite of queue i for processor i and let
g _(,i (/)ni(k)... ) for each class 1,k, . . . EC(i) where nWj(k) denotes the number of cus-

tomers in class k at queue j. Let X'j denote the effective arrival rate of class customers for pro-

cessor i. Conservation of flow yields

A'-1 Xikr'kj * jEC(i) (2.21)
A CC(i)

Then the steady-state probability of state qi is

rk') n'(k)

V C" " • jk I

q kE() 
a

where ni- n'j(k), pj ---s j k, and s'j is the mean service time at queue j for processor
k E('(i) • =

If we let qj --(1i j) we have

'a. ., a. , .f
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q n

where p j = E pijk and ('(ij) is the set or classes arriving at queue fir processor i. "lh1us
kCC(QJ)

the steady-sUde probability of state x, is

Ixv=(, b p'J'" '"-

U. = ____ w.

X, J=1 nfli

Let I/ ' 'lhcn if we Ict xp, -:(n1 ) we have (sincc ii -0 or 1)

VIA *, c.I
= I j= 1

kE(,.j)~'l

Let thc sLtte of tie Multibus queue he represented by y =(---, ..rPN) whcrc m i denotes

the numbcr of rcqucLS in the qucuc rrom processor i. Note that m, - - 1. l)cIlutc lc O'TcCtive

arrival rate o,' cusomcr S at the Mfittiius queue from 'irocsew.r i by .; i.e.

x , X, where ('(i.ll) is !ic set or all clases arriving at the Multihus from pro-
A E C(i.M/i)

c ssor i. 'Ibcn

'Ibcrfore if the global state is X (i ' N51111, • nIN, ) we have

(II jC~ 1 f I I I" A% n!.

('(- (2.22)..

"N j=1 A R

Sj t M ... (ii I.1)i A
=(',111k CCij j--

where I O( it' = I -- in, =i, 0 or 1). .'he quantity .is dc ratio for pf)CCSSOr
'aP%

i of tie cIfccti\'c arrival rate i( qucu1c j to dic elTective airril rate at thc M1 ultis quL'iC.

%"--
%Io S i...... .

loop~%' % es
!,A-. ,k
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lcmean Waiting time per reqluest from processor i, til and thc mean waiting time pcr .~~

request Iior an), request, I.., can he derived from ecluation 2.22.

We note the following two points about equation 2.22: N

1. [quatiOn 2.22 is dependent on thc details of die model for prcecssor i only through tie

quantities s i and -C(- Q)- (for (j I.1. - ,-Q(i)). The former quantity is given and the%

latter can he compUted oii solving the conservation flow equations 2.21 (within some arbi-

trary constant). 'Ilitis the o~erall solution for 1 W or iW effectively reduces to solving a set of

linear cqu..tions (equation 2.21) 1br each of tie N processors. Since solving large sets, of

such equations is relatively easy, the main difficulty With alllying qIucucing networks to

model complex processor behaviour is specifying the d~esired behaviour in terms of queues,

service time distributions, and routing prohahilities.

2. Consider (lhe model in section 2.4 with exponential processing and access time disiributions

with non-identical processors. If we let the global state bc Xc1PAI(PDI . .. .N) where ini is

the numbier (9) ot 1) of' requests from proc'essor ; in the Multihus queue, then the steady-

%uwt Probabffity tic XP is

I,,

.....XV4 (2.23)

where t ii thc mtean processing tine of processor I.(I'quation 2.23 follows from equation% II%

2.5 i n section 2.6.) I. quations 2.22 and 2.23 are identical ifip' is replaced by P

.kEC. __Ij ef] 'Ilierefore the most complicated stationary model, when6

expressed as a qucucing network model as described in the general case presented earlier,

has the sanie solution for i~ and i, as the simple exponential processing and access time

modlel (with appropriate Cff ~-)! It is tCiscinating that the single paraineter - jif suffices in

the A)Ilution of an (almiost) arbitrarily complex model. Of course, the underlying reason for

this result is the exponential access time or server-sharing discipline of the MuLttibuIs qUeue.

A possibility to circtimvent the difficulty mentioned in point I is now apparent. Simulate or

actuially run a single processor with the desired complex behaviour on a system with exponentially

distributcd access time- (perhaps simuilaion is best to achieve such access times). Measure the%

steady-state probability distrihi tion and solve for the 1, 'HY which yields this same probability%

% %.

%~ %
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distribution with exponentially distributed processing time. Once the value of 17 " f has been

determined in such a manner for each different processor, i and 1, can he computed from cqua-

tion 2.23. 'Ibhis indirect approach for determining iW and t', may be cheaper for a large number or

processors N than the obvious alternative of simulating the entire system since N simulation runs

of a single processor may be cheaper than one simulation run of N processors (for the same

degree of accuracy).

Fiquation 2.22 is a fine result if the performance measures of interest involve just the status

of the Multibus queue and do not involve the status of any processors. If the measures of interest

involve both the Multibus and the processors, then we cannot simplify the solution of the queue-

ing network model to such a degree. This unfortunately means that the suite space may remain

large. Finding the solution of queueing networks with a large number of states is computationally %

expensive. Efficient techniques for handling such cases have been developed by ILuzen [113],

Chandy. I lerzog, and Woo 1C21. Reiser and Kobayashi [R21, Reiser and Sauer [R31, Chandy and

Sauer 1C31, Lam [1.11. and I.am and Lien [1.21. However, even these techniques require a lot of

work when the state space is as enormous as it might easily get with complex models.

Another approach when the queueing network remains large after simplification or when

product ornm queueing network models arc no! applicable, is to decompose the overall model into

more manageable submodcls, each of which can be studied and solved independently, and

integrate the submodel results to obtain an overall Solution. Except in special circumstances, such

a procedure yields only approximate results and thus several iterations of decomposition and

integration may be required to obtain results of sufficient accuracy.

2.10.3 Time Dependent I1ehaviour A.

This subsection is directed chiefly towards time dependent behaviour of the processing time

distribution. We regard the access time distribution as mainly fixed by the hardware and thus time

invariant. lowever, the probabilities of the different type of accesses - word vs. long word and

Multibus vs. Ringbus - may well be time dependent. If these probabilities are time dependent they

can be treated in the same manner as the processing time distribution.

We limit our discussion to processor behaviouis that can be reasonably well approximated as -.

time independent - i.e. stationary - on a finite number of nonzero time intervals. Tl'he idea is to

represent each stationary interval of this piece-wise stationary approximation of the processor ..

behaviour by a stationary submodel. The overall processor model then consists of a finite set of

such submodels, with exactly one such submodel in effect :t each point in time: the duration each

submodel remains in effect: and some stmtegy to choose the next submodel when the time allot-

ted to the present submodel is expended. IFAch stationary stibmodel can he arbitrarily complex

%,..._J

kv ," " , ' " _-'',, " "' '" ", ". , ,'.- '- "v " '. - ' ." . ,.'-,'-.' ' ,..' ,'.'.' '. '- '.'','-..X"-",, ,.". ," - ... -.:'..'.,'.-'.-, .'..- ',.



124 Mullibus Models

such as those models distctssd in sections 2.10.1 and 2.10.2 - as long as it is stationary and

independent of all other sublnodels.

Wc distinguish two cases based on the time required for a suhmodel to a)proa:h s ady-state

(i.e. for the transients to die out) relative to tie duration of the submodcl.

Case I: For every submodel, the time required to approach steady-state is small relative to the

duration of the submodel. (We will not discuss what is "short" enough.) In this case it may be rca- "

sonable to approximate the behaviour of each submodel over its entire duration by its steady-state

behaviour. lie behaviour of the overall model can then be approximated as a piece-wise function

of the srcady-state behaviour on each submodel interval. In this case it is probably best to

represent any perfoirmance measure of interest for the overall model by a vector of such perfor-

mance measures with each element of the vector corresponding to a different submodel.

Knowledge of the duration of each submodel and the strategy for choosing subtmodels allows the

averagc of any performance measure to be determined from its performance measure "vector" on

all the submodels. Note, however. that such an average performance may not be too meaningful;

at the least, it must be carefully interpreted. Note also, that the steady-state behaviour of the other .

submodels can be determined simply by assuming it is the only submodel. Thus this case has the

important attribute that the overall modlc can be decomposed into a. number of smaller and

independent submodels.

Case 2: or at ;east one suibmodel. the time required to approach steady-state is not small rlat;vc ON

to the duration of the stuhnodel. This case is more difficult since the dynamics of the overall .

model preclude its treatment as independent submodels. (Thcre are certainly situations in which

some but not all of the submodels can be treated as independent and approximated by their

steady-state behaviour over their entire duration. Perhaps such hybrid situations should be called

Case 3.) To handle Case 2 we need to incorporate in the state description somehow the expended

time (or remaining time) in the duraioi of the submodel in cffect and die submodel (and perhaps

some past history of subtodel choices too). Of course we can specify a Markov prt'css which -%

incorporates this additional in formation Nit we again return to the more abstract quetcing net- *

work models. In fact we return to the activity based qucucing network niodel discussed in the

previous subsection.

We consider each submodel to be an activity with some probability distribution, IFd(I), for
the time in that activity and some probability distribution for the next activity to enter given the

It will almost certainly talnl out that it is too dificuli to tret such Maln ko proccsws aivat.lially except in .. % .

trivial cases.

',1,, % , '" " " " " . . . . ' " " " ' . . " " " ' " ' " ' " "* " " " " " " " . . . . "" I" "
..... ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ RN OX- -" - , " ' ',t- . '-' i" ,. ',,- .'","-.,..., .' " .,-
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current activity. ('iis tatter probability can be generali/ed to depend on past activities.) We

rcprcsent the set of activiues as a qucucing nctwork model as filh)ws.

Let thcrc be one qucuc per activity. The Service time at this queue has thc same (stationary)

distribution as the processing time of that activity. (We consider a situation in which the processing

time distribution of the overall model is not stationary. We do not consider any other complica-

tions here on the basic queucing model discussed in section 2.1.) Let the classes associated with the

queue represent the total amount of processing time elapsed so far while in that activity. Specifi-

cally. let there be classes

I. c'(i ,nAI) representing a request fir the Multibus from activity I where the cumulative pro-

cessing time while in activity i is iE[nAi.(, I I)Ai), and

2. c2(i.n A) representing a request returning from Multibus service to activity i with cumulative

processing time while in activity i of I [i Al.(n + I )Ai ). (We quantile time So we can deal j"

with discrete probabilities for the time being. We'have chosen quanta of uniform size for sim-

plicity in the presentation.)

'Tlic routing probabilities at queue i (i.e. the queue associated with activity i) are:

(m-n,')At

p(C2(i,i t1 c: (. III &/) I ,'T""

0, oderwise ,-

where f ,(1) is the piobability density function (pdo) of the processing time at queue i. The rout-

in, probabilities at the Multibus queue are:

e'(nA0)pqj if" i=O0and j~i"..

p.(c 1(ix Al):c 2(j,))= 1 - e'(nA) if / :A and j i

0 otherwise

Pt is the probability that the next activity is j given that the current activity is i (-pi, !).

C'(n At) is the probability that activity i ends in n Al,(t(n - 1)At) given thadi the sum Of the pro-

cessing times incurred while in this activity is >nt, i.e.

.,

° ".°4.
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(Pt i I)Ar

f fd (s)ds
00 Prob(di<nAI)<

f fd(S)ds
nA)

!, I'ob (di,nA ) =

where d(I) is the pdf of the duration in activity i.

We now have a queueing network model of the form discussed in the previous subsection.
From equation 2.23 we know that he steady-state probability distribution of customers in the %
Multibus queue (from which we can detcrinc I and i-) depends on the mean pro cssing time e

while in each activity and the ratio of the cffective arrival rate at each queue to the effective %

arrival rate at the Multibus.

IOcnotc the effectivc arrival rate of class cl(isAi) customers by T(h(inAi)). Then the

ratio k EC (ij) of equation 2.22 is given by
A.~

00

(2.24)

N2 X~c 'i,n At)a
I n=O

The conserv;Ition of flow equations are

c t) - e+(nAt ))X(c'(issA,)) + YpjieJ(nAt)X(c(j,nAt)) '.
jii

and

n.O (m -n)At
X (c (i,ntA f) f fP (s )ds Xc 2(ii nA/. i+

Manipulating these equations we have

0000 I

X(c,2jm At)) (2.25)
m =0 m =0

and

~ ... ... : :-. ,,."
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M'sf (s)ds(l -- (n A,))A(mc '(' ii Y)
it -O (m- ,-I j

(2.26)t ,'6

"Ihc ratio in equation 2.24 is determined by the solution or equation 2.26 and the identity %. S-

2.25. 'Thc system of linear equations 2.26 can be solved for X(c¢(iinAI)) within an arbitrary con-

stant. l'hcreflore. as in the previous subsection, the overall solution for 1., and 1w effectively

reduces to solving a set of linear equations fbr each of the N processors. P%±

It is highly desirable to keep the number of time quanta fairly small so that the number of CYA

equations to solve in 2.26 is not enormous. "ie degree of inaccuracy introdUccd in the solution by

the quantization can be estimated by comparing the solution with that obtained with a larger

number of quanta. A,

Finally, this treatment of nonstationary processor behaviour can be extended, along die lines

of the previous subsection, to deal with more complex processor behaviour.

2.10.4 Dependent Processors

By dependent processors we mean iat for at least one processor i thcre exists sonic time I

such that the operation of the processor i; nOt Statisfically indcpendent of de operation of proces- -

sor j for all j#i and fiot all time s<i. To model dependent processors, the state of a processor

must be allowed to depend Onl the stae of' other processors. This dependency unfortunatcly pre-

cludes the use of qucucing network models %ith product form solutions as we have plrsued to

this point in this thesis. The reasoning is as follows. %

In a queueing network model, the state of a processor is given by the concatenation of the

states of all queues representing that processor. Alternatively, we can view the state of a processor

as given by the class in which the one customer is in. (There can ouly be one customer per pro-

cessor since we are modeling the Multibuis at the menory access level and processors are single

tasking - i.e. a processor is idle while it has a Multibtis memory access pending or in progress.)

lhus if' the states of two processors are dependent. then some of the respective classes of the pro-

cessors are dependent -i.e. the present class of tie customer for one processor may detcrmine the -,

present or future class of die customer for another processor. But a product form solution is not

guaranteed if the class of one customer depends on the class of another since the routing of custo-

mers is now effectively dependent on the sutte (if the qucucing network. (Walrand's proof [WI].

t Upon making the limit AI "".0. equ.tion 2.26 lxcomcs a .ct of Volterra integral equations or the second kind

% % % % % %% % '.
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of the product form for nelworks of quasi-reversible queues requires that the routing be indcpcn-

dent (if everything else.) For two processors we can attempt to circumvent the dilliculty imposed I
by dependent classes by introducing "supcrclasscs" to rcprelsnt all possible pairs (C(i.C) where Ci
denotes a customer class for processor i. (This can be generalized for more than two processors.)

A change in class at processor i then forces a change in the superclass which also forces a change

in class at process j. A product form solution can be developed with respect to the superclasscs.

However, a customer in a supcrclass can only have one service time distribution at each queue. X,.

Yet a customer in a superclass represents two customers of classes Ci and (C, respectively from

different processors with possibly vastly different service times at queues. 'liherefore a queueing

network model with supeaclasses is not representative of the original queueing network model

unl.s the classes C and C, corresponding to each superclass have the same service time distribu- <,

tion at each queue for the two different processors. And if this is the case, the proce.sors are not ,

dependent. 'ihus we cannot guarantee that a queueing network model for dependent processors

possesses a product form solution and represents the operation of the processors.

'[he above reasoning implies that we cannot model synchronizittion and mutual exclusion.

two principal forms of dependency between processors, with queueing networks and expect pro-

duct form solutions. In addition, it is well known [SI] that product form solutions cannot be

expected for queacing network models involving multiple resourcc possession. Multiple resource

possession cccurs when a customer at one qudoc requirt's simultaneous service at several queues,

thus "posscs.,ing" the servk e resources of those qucues. An example of mtiltiple resource posses-

sion in Concert is a Ringbus memory access. Such an access requires the simultaneous possession 4.

of the Multibus and Rimigbus. 'Tlius a product form solution cannot be expected if we model Con-

ccrt as a queueing network model with a queue for the Multibus and a queue for de Ringbus.

This is one reason why we have chosen to decompose Concert into separate Multibus and Ringbus

models and regarded Ringbus memory accesses as just requiring a different service time at the

Multibus queue. -.

All the dependencies mention'ed above can be handled with sufficiently detailed Markov

chain models. Hlowever such models suffer from a relatively low level of abstraction: the structure

of the model is often obscured and one's energy misdirected by the details of Markov state dcfini-

tions and transitions. Stochastic Petri Nets (SPNs) [M21 allow modc'ing at a higher level of

abstraction than with Markov chains and can easily handle the sort of" dependencies mentioned

above. A SPN model is less complex, easier to construct, and has a greater likelihood of being -'a

correct than an equivalent Markov chain model.

A Petri Net is a set P of places, a set T of transitions, a set a of directed arcs from places to

transitions, a set fl of directed arcs from tnIsitions to places, and some initial placement of tokens-"'

in places (called a marking). Arcs incident on a given transition are called input.arcs and the places " °"

% %,
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from which these arcs emanate are called input places for that transition. Arcs ernanating from a

given transition are called output arcs and the places at which these arcs tenninatc are called out-
r

put places for that transition. A transition is enabled when there is at least one token in each or its

input places. After a transition is enabled, it fires immediately. removing one token from each of

its input places and adding one token to each of its output places. (lherc can be more than one

token at a place.) A simple Petri Net is illustrated in Figure 2.23. The circles represent places, the

bars represent transitions, and the dots represent tokens. See Peterson [P2] for an extensive discus-

sion of Petri Nets and their properties.

J.%'

.%'

Figure 2.23: A simple Petri net

A Stochastic Petri Net (SPN) is a Petri Net with the following modification. Associatcd with each

transition is a random variable which specifics de interval, called the firing time. betwcen the cna-

bling of that transition and its firing (given that the transition is still enabled at that time). At the

instant at which a transition fires - and not before - one token is removed from cich 1" its input

places and one token is added to each of its output places. Thus the firing of one transition may

cause the disabling of another transition. The probability distribution of the firing timc is given

and possibly different for each transition. (Petri Nets can also be made stochastic by incorporating

probabilistic service times at each place.) With appropriate probability distributions htr the transi-

tions T1. T 2, T3, and T4, Figure 2.23 represents a SPN model of a two processor Multibus system.

(TI represents the processing time of processor 1. T2 represents the access time of processor 2, T4

represents the processing time of processor 2, and T3 represents the access time of processor 2.) "

More complex SIPN models of processors can be developed easily. Performance measures, similar

to those derived with our oti-r inodeling techniques. can be derived from a SIPN. Molloy [M2] has 'A

shown that SPNs with exponcritial firing time distributions arc isomorphic to one dimensional

Markov chains and thus the performance measures of interest for such SPNs can be determined

by their equivalent Markov chains. llowever, with Molloy's technique relatively small SPNs rcsult

in large Markov chains. Such state space explosion makes Molloy's technique unattractive for

determining the performance nmasures of larger SPNs. Wiley [W3J has dccloped techniques that

arc more efficient and more geieral.

'%..,
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2.11 Conclusions

1. 'Ibe general hehaviour of die mean waiting time per request is similar to that depicted

in Figurc 2.3: the position of the knec and the asymptotic slope depend on i.,, the mean proccss-

ing time: e. thc mean Multihus access timc; ir, the mean rccovcry time: I1,R11, the mean

Ringbus access time: ,P, the probability of a long word access, and 4., die probability of' a Ringhus

access. The exact shape of the waiting time per request versus number of process rs curve

depends on the probability distributions for the processing, recovery, and acccss times. Generally,

the more "deterministic" these distributions are - i.e. the smaller the variance of the associated

random variables - the shallower the knee is. In fact, the mean waiting time per request with

deterministic processing, recovery, and access times provides a lower bound on the mean waiting

time per request.

2. The mean waiting time per request can be more sensitive to the parameters ,P and 4'

than to the probability distributions for the processing, recovery, and access times. In the cases that

we simulated (in section 2.8.1.4). we found that the mean waiting time with various probability dis-

tributions was fairly close to that obtained with exponential probability distributions. his suggests

that future effort be spent determining appropriate values or ranges of values Ilor the parameters

/3 and 4 and assessing the adequacy of our simple processor model.

3. 1 he assumptions of identical proccs;oi s and a simple processor model can he removed,

as discussed in section 2.10, by expanding our basic qluecing nctwork approach. The as"sumption

of time independent behaviour can also be removed, provided the time dependent behaviour can

be reasonably approximated by time piece-wise indcpendent beheaviour, bj expaiding the queue-

ing network approach. Tis approach is trivial in the special case when the overall model can be

decomposed into independent submodels for each time scale. Otherwise. this approach is very

complicated and probably unreasonably difficult for all but simple models. The assumption of

independent processors is the most difficult to remove. In fact, it cannot he removed by any

expansion of our queueing network approach (unless one is willing to Sacrifice tractability and

consider neLworks without a product form solution). As discussed in section 2.10.4. the behaviour

of the Multibus with dependent processors can be modeled with low level Markov chain models,

or more preferably, by higher level models such as Stochastic Petri Nets.

4. The performance of the Multibus can he improved by the following: -I

i) reduce the frequency of long word and Ringbus accesses. Ringbus accesses are especially

detrimental to performance because of their extremely long duration, during "hich all Mul-

tibus traffic is blocked. In the actual Concert system, the iinimmni duration of a Ringbus

access is 2.00Lsec and the ima'ximum duration is 7X(1I)X0.200 jscc) (the maximtmin duration

for which the rcqtircd segments can b, allocated to other requests) + 2.70psec -

16.70/.sec (astuning ro te.it and set instructiens). Most Rinibus accesses will have a

Vr-. % -- ," % % ,
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duration sormewhere between these two extremes, depending on the processing time, f, and II
'I wo ways to avoid blocking Multibus traffic when a Ringbus access occurs are to: ,

a) replace the Multibus by two or more parallel buses, or perhaps just add a private bus

for Ringbus accesses, and

b) divide the memory transaction protocol into a memory operation component and an

acknowledgment component that occur at separate times between which control of the

Multibus may be relinquished to other memory transactions.

INOt of these options are costly, although (a) is probably less costly. ._

ii) decrease the overhead time on non-local memory accesses. F ach non-local memory access

experiences 100 to 200nsec of delay due to the Multibus arbiter and substantial delays in

asserting the IIRI'Q* (Multibus request) signal upon detecting a non-local memory access

and in asserting the address and control signals once the BPRN* (Multibus grant) signal is

asserted.

iii) reduce the Ringhus access time. V.-.

2.12 Futurc Work Required

1. Evaluate the single processor equivalent model and the Multibus models. I)erve

appropriate values for tie processor model parameters from real programs and compare the per-

tbrmalcc predicted by d.c ,vlultibus models with tie actual performance.

Ali [AIl has performed some work in this direction. He found excellent agreement between

predicted and actual performance ot the simple Multibus (no long word or Ringbus accesses) for

some artificial programs emulating the simple processor model. For the "real" programs which Ali

considered, he found time dependent behaviour to be very important, suggesting that stationary

models are inadequate.
2. Improvc the processor and Multibus models and develop new oncs.

I'lie existing models can be improved to some degree as discussed in section 2.10. I lowever,

a better direction in which to proceed is to develop highcr level models, such as Stochastic Petri

net models. Time and processor dependencies are easier to model at higher levels.

.J w

0.-...

n i In | ,n ,' -ani, m " " I . _,1 . t ," ' " " .,, ,' . -",- .%° % '- - ,, , , -. '- - -



132

*4

I',,

CC-.. 'U.

A

* -9.i

• 

G.- .

I-- t



133 -O

Chapter 3

The Ringbus Model I

3.1 IntroductionP

In this chapter we study the Ringbus subsystem. As disussed in section 1.3.5. we replace

each Multibus by a single processor equivalent model. We assume that cach Multibus, and thus

each single processor equivalent model, is identical in all respects. We also SSume that the ."

Ringims is symmetrical with respect to each Multibus. We make thesC assumptions So that we can

use ie abundani symmctry that they imply t) simplify considerably the analysis of the Ringbus

and the integration Gf the Multibus and Ringbus models. The treatment in this chapter can be P ,-

extended easily formally (although not so easily practically) to deal with situations in which these

assumptions are not valid. We assume an exponential distribution for the processing time distribu-

tion of each single processor equivalent. The reason for this is again to case analysis. We make ti)

;ssumptiots at this point about the access time distribution: indeed, this distribution is one of the

factors for study in this chapter. N..

The focius of' this chapter is the optimum performance of the Ringhus. [here are three rea-

sons for this emphasis on the optimm performance. :ir,. the Ringhus is a novel intcrconnection

scheme which has not been studied previously (as far as wke know). Thus, knowing the optimuni

performance of the Righus satisfies a naural curiosity. Second. the theoretical mnaxitum "

improvement in perf'olmaucc of' any particular Ritghus design (including the design utili/ed in

Concert) can hc determined from the optimum perfOrmance of the Ringhus. This theoretical per-

formance improvement is useful in evalUating RingbUs designs. Third, knowledge of the optimum.

performance of the Rinlgus allows the Rigbus to be compared with other interconnection
schemes in terms oi" the optimnini pcrforlmance. Since the RIinghus is a noel interconnection, the
sptimui pcrl'Ormn c of the Ringhiis is important in establishing the merit of Ringhis-like

sch "'nm s Co e r i (t r ,ioneio ch e cs."
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o avoid getting ovrwhelmd by details or trappd by the small and relatively unimportant%
diikbrences bctwci'n various Riughus designs, Wc tke anl abstract view of' die Ringbus. TlhisIN

abstract view is its follows. TIhe Ringbut; and Ringhus arbit-cr operate synchronously With an arbiter

clock of period c. Requests for thc interconnection of source and destination slices arrive fronm thC '
Multibuscs (or in this case the single equivalent pr~cessor models of thc Multibus) asynchronously

with respect to the arbiter clock. On each rising clock edge, thc arbitcr examnines all pending

requests and then instantaneously decides which requests should be granted and how the requecst%

should be granted. 'This decision is implemented immediately so that there is zero delay from die

rising edge of the arbiter clock to the timec that a segment allocated to at request is used. Once

granted. at request lasts exactly somne integral ntumber of arbiter clock pecriods. We aIssumeI, Without

lo ss of generality, that the duration of at grant (which is what we call at granted request) is encoded

in its request rather than determined by the number of clock periods belbre the request is

removed (ats it is in thle Conicert system).1t Requests remain pending until they are eventually

granted. T[he Ringbus itself we consider to be just a ring of buS Segments Under the control of at

central arbiter.

'[he abstract view of the Ringbus given ahove is really a set of simplifying assumrnpt ions. We

list thle most important of these W;Sumipuions below.

I) We ignore the delay,; of thle R Hi circuitry, incluJing die delay to mnitlgatc metastability when

latching the asynchronows request signals from-i thle MuLltibms.

2) We assumec zero arbitration time and zero delay in) connecting the bu!s segmnents of the

RingIbus.

3) We assume grant durations of* ant integral number of arhiter clock pcriods.%

4) We assumec that the minimum time between the termination of a grant of some slice and the

next nonnull request from that slice is zero.

In addition, we assume there are no global register accesses.

We term the abstract view of the RingbuIs summarized by the above assumptions thle isolted

Ringbus model. In section 3.9 we discuss the diffecrences between thle environment of' the isolated

Riughtis model (created by these assumptiolls) and the environment of thle Ringbus in the actual

Concert system. We also consider thle effects these differences have oin the perflorniance of the -

Ringhus. '[he Multibus-Ringbus interaction, which is simplified by assumptions I and 4 above, is

tSince there omiy he /cro time cImween the termination of a giantI and the next noiil request from a slice in
our ahstrict Rmpbi~us. the wileir 0111101o UIII IIiihiUOus~y diffei citit betweeni a continuing gi ant ind a new
noiiull request of' the minec type if the idiji;non)1 of a requiest is (eternmled h the Iterval until the rcquest is
rcnised. Ini the C onceit system there is atcs one chwtk period of dead timeu betwen succes.sise noIIIIullI re-
qtic-,ts fromt the Nanic slice io pireciii this imbiguity,*

JI,
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discussed in detail in section 3.9.1 and in section 3.3.2 of Appendix A for the actual Concert sys-

tem. 'Ilh ultibus- Ringbus interaction is comnplicated, detailed, and very dependent oin the imple-

mientation. TIhis is the reason that we simplified tie interaction in our abstract view. 4
e- %

We intcrpret the Ringhtis in at broad sense. We define the Ringbus to be at ring of indepcn- I

dent bus segments in which adjacent bus segments; may be connected to form longer buses. Aswo

ciatcd with each bus segmnirt interconnection point is a slice which is connected to the segments

via an access path. All Ringbus accesses originate and termninate at slices. Thbe interconnection of

the bus segments occurs in real time under the control of a central arbiter in response to requests

originating from slices for paths to other slices. We assume that the arbiter operates in discrete

time (although it need not in all cases).

D~iff'erent RingbLus designs are distinguished by 1) the numiber or bus segments (which is

equal to the number of slices). 2) t-he access paths between the slices and bus segments, and 3) the

arbitration algorithm. In this chapter we only consider Ringbus designs with an even niumber of

slices. In addition, we only consider two differen types or access paths: asymmetrical and sym-

inetrical. The Ringbus design utiliz~ed in Concert has asymmetrical access paths (as discussed in

section 1.2.2.) [See also Figure 3.1.1 Ilereafter we call this particular RingbUs design - mninus the%

arbitration algorithm - the Asymmetric RingbuIs. 'Iliese asymmetrical access pathis imTposC uinneces- %-

sary pecrformranlce limitation. 'As discussed in section 1.2.2, COkinicrchickwisc accesses on the Asyrn-

rnctric Rimighus r,-qUirc two segments in addition to the segmnents between the source and destina-

tion slices. Svimmictrical access pathis remove this perlbrinnrcc limitition. A Syrmetic Ringhus is a

Asymm~netr'ic RingbiuS %~ith SWinmcrical access pahs instead of' asymmentrical accce paths. Figure

3.1 illustraes the access paths of the Asymmetric Ringbus and the Symmeitric Ringhus. We define

the Concert Ringbuis to be the Ringbus and arbitration algorithm actuaIly used in the Concert sys-

tem. 'Iliat is. the Concert Ringbus is a Asymmetric Ringbus with a rotating priority arbitration

algorithm (as discussed in section 1.2.3).

%

t An ersn [2.1actullyrals (is abilatin agorihnna rullq piori . ullarbiraton 1rhtralin lpvlhn

to dstiguih i fron ohcr hcconsderd d rin th dcsvn l' oncrt W %il w l i ,inpl%.1 otStin

arbitration algrihm



131, Riaugbus, Model

R inithuswenmcnt

clockwise
R rngbus rmcnt

Myniictricai accei. Pati% eynerclicc~ a

I-igure 3.1: Access pithls of Asymmetric RingbUs and Symmetric Ringbus

As stated eairlicr. our chicl' interest is the optimumn performance of the Ringhus. Since thle

Symmetric Rirlghus is a sttperscc of the Asyrumetzric Riflgbits. theC o)pliu perhmnnlce of lhc

Symd:ric Ringlius is gicater than or equal to that of the Asymmectric Rinius. F'or this reason,

we concenltrate oil the optimumi pcrf'ormiancc of the Symmetric Rtinghus in this chapter. [he Sym-

mectric tirighus is also easier to aiialyze since it has more symmetry. III thc Course of dceerining

thc optimum performance we also determine tie optimal arit~iration algorithm, which is of interest

in designing go(xi S~ib-opti1iaI algorithms.

Wc briefly considcr thc optimum perti-manicc of the Asymmetric Ringghus for a small .
number of slices. InI addition, we determine thle performance of the Concert Ringbus and the per-

formnance of the Symmetric Ririghus with the rotating priority arbitration algorithm. A trivial

modification to thle arbiter in the actual Concert system (which we call tle Concert 101gbus

arhiter) allows this algorithm to operate with symmetrical access path%. (The additional complexity
and circtiitry required in the RI III might not be judged as trivial.) The problem from the point of

view of ,he arbiter with symmetrical access paths is that conflicts may now occur at the request -

destinationi a-, well ats at the RingbOs Segments. '[busLI the arbiter mutst arbitrate tie destinations as
well as tie Ringbus segmnrts. '

To include this feature, the arbiter just needs to arbitrate for each Ringbius res.'our-c - Seg-

mernt or decstination - in the ,.ime nmnner in which Ohe arbitration proceeded for the segmens in

the Conicert Ririghus arbiter (see section 1 .2.3. [he First step is to deterinine all the Ririghis -
resources required for exch reqiiest. As in the Conccrt Ringhus oimiter, requests would be granted

%w P '.r
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only in the direction requiring the smallest number or segments, with ties being broken in prefer-

encc of the clxk*ise direction. Fin:ally. a request would be granted when it has been granted all

the resources that it requires.

A logic diagram for this new arbiter is shown in Figure 3.2. The par Count has doubled

because we now have double the number of Ringbus resources to arbitrate. However. the size of -,

the parts required is the same. The number of parts is proportional to the number of resources

and the size of the parts is exponential to the number of sources.

This new arbiter design, which evidently was overlooked during the design of the Concert

system, would result in superior or equivalent pcrfonance in all cases. (It certainly cannot result

in inferior performance since its functionality is a supcrsc of de other's.)

In section 3.2 we firmulatc the Ringbus as a discrete time probabilistic model. Time is

quantized into discrete intervals, called rounds, which are equal to and synchronous with the

arbiter clock period. The performance metric of the Ringbus model is the throughput in terms of t,

the average number of grants completed per round. 'Ilic optimum performance of the Ringbus

model is formulated as a Markovian decision problem.

In sections 3.3 and 3.4 we investigate the optimal arbiter for a Ringbus Of four slices. Section

3.3 covers grant durations of one round and section 3.4 covers gran durations greater than one

round for two special cases. These special cases are dctermiisic grant dulainns and geometrically
distributed grant durations.

In section 3.5 we investigate the optimal arbiter for a Ringbus of six slices and develop a

number of hounds on the optimum throughput.

Sections 3.6 and 3.7 consider the Ringbus with eight and more slices. Since the computa-
tional requirements for these cases exceeds the available resources, we just discuss die general ',,

characteristics of the optimum throughput in section 3.6 and the optimum throughput for some .. .

special cases in section 3.7.

In section 3.8, we compare de performance of the optimum arbiter algorithms and the rotat-

ing priority arbiter algorithm for the Concert and Symmetric Ringbuscs.

Finally, in section 3.9 we discuss some of the differences between our abstract Ringbus U
model and the Ringbus utilized in Concert. We consider the effect that these differences have on

performance. The last part of this section develops the hooks for the integration of the isolated

Ringbus model with the Multibus model.

I
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31.2 Ifingbius Model Formulaution

Fromni th single proccssiir equlivalent model of' the Multibus, wc know that if a Ringhus

access occurs in some round then with probability p1A fH' ts, destin ation is i slies around the.--

Ringbus from the source slie (i -(XSI 2--1). , 1, 2, S1X 2). Negative values of i

indicate the counterclockwise direction around dhe Ringbus and positive valucs indicate the clock-

wise direction. Note that this probability distribution of requests is independent of the Source Slice.

'Ibis is it consequence of our assumption that all Multihus models, and hence all die single prices-

sor equivalent model of thc Muihius, arc identical. Sincc we assumed an exponential distribution

for thc processing tine distribution of the singlc proKcs,,sor equivalent model of' thce Multibus, the

probahility that dhc next request at at slice arrivcs in the i th round after die end of thc previous A
grant at that slice is a constant independent (if i. In other words. thc nuinher of rounds between
dhe cnd of at grant and the next request at that same slice (i.e. thc disc reti,.ed processing time of .

the single equivalent processor model) is at geometric r-andom variable. B-cauise of thle memnoryless

property of a geometric random variable, We Canl eXClude f'roni the state description any in forma- dX

tion onl (he number of rounds waited so (*,ir for a request to arrive at at slice. Thus the assumption

of an exponential distribution flor the processing time of the single processor equivalent model
.iiplifies no( only tl'c integration of the Multibus arnd RWngbus mnodels but also the aiialysis of th

Ringbus model.

In each round tile arbiter must decide which subset of dhe current requests to gianit based onl

past and present informaition only. [he arbiter is thlus at causal, discrete time decision inaker. lDcci-

sioIIs are SubIjct to the Following constraints:

1. All segmnitts required by at request Must be connected as requiired before or at the same time

that the request is granted.

2. Fach segment is used for noi more than one grant in a round.

3. All segments required by a grant remain connected and allocated for thle cxclUSive use of thalt

grant for thle entire duration of thie grant.

4. Every pending request eventually gets granted i.e. cacth request has a botinded waiting time.

(TIhis requires a bounded RingbuIs access time, (in the Concert system each Ritighuis access.

represents a single memory transiaction -read, write, or read-modify-write - and thie dur-ation

of each Such transaction is bounded by the Rijigbus timeout period.t)

Without loss of generality, we consider the %~gmcents referred to in Constraint 1 to be con-

nected at the time that a request is granted. 'This is iin fact how the lRimgbLuS operates iII Concert.

Ir thc iddresscd incin Inncat inn it thc d'..st iiation Ri Imsdi not responid w ith in acknolOW utpii icrt within 3

givecn Iincr interu a. the temim it Ii sendi a sig nal to the snirce R III which aiorts ihc Rimg htI\ WCceS

% o I
. ~ ~ ~ ~ ~ ~ ~ ~ ~ -.,... , , , . ,J
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We make the following three simplifications in our fofrmulation of the Ringhis model:

1. We exchlde from the state description any inilo',nation on the duration that aI request waits

belore being granted. This waiting time inflormation is irrelevant when

i) in modeling the performaicC of thc only non-optimal arbiter algorithm considered iii this

chapter - the rotating priority arbiter algorithm, and

ii) determining the optimum pcrfonnance of the Ringhus without Constraint 4.

The waiting time information is irrelevant in casc i) bccause the rotating priority algorithm.

do s not utilize this information. We have not presented sufficient machinery at this point to

show that the request waiting time information is irrelevant in case ii). In fact, we we have not

even completed the formulation of the Ringlbus model. Therefore we relegate i precise stite-

ment and pr)lf of the irrelevance of this history infolrmation, which we call Theorem 3.1. to

Appendix II aid encourage the reader to examine this theorem after completing suhsection e

3.2.1.

2. We ignore Constraint 4 when pursuing the optimum performance oif the Ringbus. Our rea-

sons are as follows. First. by ignoring Constraint 4, request waiting time information may be

ex).luded liom the Stle de sription (as justified by Theorem 3.1), thus penuiting the analysis

to he greatly simplifi%'d. Second. ignoring Constraint 4 removes die e(et of die maximum

pcrmissih!c waiting tine on the the optimum performance so that the olptiniim p'rf'orniance

obtained is the inherent optimum perli)rlnance of the Ringbus architecture. If the maximum

permiksible waiting time is sufliciently large. Constraint 4 has negligible effect. If it is sum-

ciently ,,nmall (such as equal to its minimtm value of (S - 1)1) where .' is the number of slices

and /) is the maximum duration of an access), Constraint 4 has an enormous efTect on the

performance. In fact, with a maximum permissible waiting time of (S - 1)/). the arbiter algo-

rithm must impose some sort of strict priority ordering on requests. Third, any arbiter algo-

rithm can easily be modified to ensure bounded waiting times. Such a modification may, of

course, result in a degradation of performance dependent on the maxinum permissible wait-

ing time.

Note that assuming a large enough maximum permissible waiting time is essentially equivalent

to ignoring Constraint 4. We prefer to think of ignoring Constraint 4 as asuming such a large

enough maximum waiting time.

3. We limit the duration of a grant to have one of the following two simple forms:
,.. 9

i) a constant duration of d rounds where 1-- 1.2,3, or 4. %

ii) a geometric probability distribution i.e. the duration is d rounds where d is a random

v.ri.ble with a (iemnoryle's) geometric distrihution.

, . 1

% % %z- % %9

A N ' L%
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3.2.1 Markovlan IDeccislon Formulation

L.et the slate of the Ringbus (ignoring request waiting times as discussed previously) at the

beginning of each round he described by

(rj~dj-.r2,d2;'" rjdid'" r- .,ds

where ri denotes the destination of the request at slice i and di indicates the duration for which

thc request has been granted so far.

We express the destination of a request as the numbcr of slices the destination slice is

around the Ringbus relative to the source slice. We use positive numbers to indicate the clockwise

direction from the source and negative numbers to indicate the counterclockwise direction from

the Source. Thus ri - 2 indicates a request to the slice two slices along the Ringhus in the clockwise

direction from the source slice, and ri r--2 indicates a request to the slice two slices along the

Ringbus in the counterclockwise direction from the source slice.

We do not use r = O to indicate a request from slice i to slice i. We assumed earlier that

there arc no global register accesses, hence such requests do not occur. Instead. we us ri - 0 to

indicate that slice i is not requesting a Ringbus destination. We call this absence of a request a null

request. The arbiter treats a null request just like a genuine request cxcept that I) a null request is

always granted immediately when it occurs (since there arc no resources to bc grntcd for ia null

rcqucst) and 2) a null request always has a duration or only one rountd. Any two consecutive

genuine requests at a slice are separated 'by some number (possibly zero) or null requests propor-

tional to the processing time between those genuine requests.

A request from slice i is pending (i.e. not yet granted) if and only if" d, ---0. 'lie duration d, is

increased by one for each round that the request remains granted. We express the destination of

any pending request in ternis of the smallest number of slices - either clockwise or counterclock-

wise direction - the destination slice is relative to the source slice. A tic in the number of slices in

each direction is broken in fEavour of the clockwise direction. Thus for any pending request if the

source slice is i and de destination slice is j]i. then '".

r.~IX <S/2x" , S , / 2 <x "
where x =(j- i) mud S.

A request may be granted in either clockwise or countcrclockwise direction. We exprcss the %

destination of a request once the ,cquest is granted in terms of" the direction in which the request

was granted. Thus if a request is granted from slice i to slice j* i,

-X if granted in clockwise direction
- il'gianted in counterclock wise direction ,.,

ii.a'
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where x - (j -i) n ,n S.

"Therefore once it request is granted, we use r, to indicate which segments ha~e been allo-

cated to that request. For the Symmetrical Ringbas, the mapping from ri to the segments is espe-

cially casy: I ril indicates the number of segments allocated beginning fromn slice i and the sign of

ri indicates the direction around the Ringhus in which these segments are allocated. For the

Asymmetric Ringbus, the mapping is the siame except that two additional segments are required

for rcquests granted in the counterclockwise direction: the segment most immediately clockwise of

the source slice and the segment most immediately counterclockwise of the destination slice i.

('Tus there is only one direction to grant req.ests from a slice to its immediate clockwise neigh-

bour i.e. from slice i to slice (i in/ .S') + I.)

An , x;npl of the definition of ri is illustrated in Figure 3.3.

0 3 "4- rcquests ungranted - -

4.'.P

r.- ).r2 3  -3 r 26r -- I

S)mmelric Rinibus Concert Ringhbs

3 - requCsts granted ---- o additional

.qn nis required

r 1 r. =5 r= 2, r - I

Figure 3.3: Fxamples of ri

In some cases the stale desription simplifies. if all grants hae a constant duration of one

round, (hen all the di can be eliminated from the stte description since ai new request - either

genuine or null - always replaces a request once it has been granted. If all grants of genine

requests have a duration with a, geometric disrihution, then we only need a binary Nariahle for (I. %

As before. dt, indicates a pending request. di - I indicates that a request has been granted tor one

or more ronds. Tlhe exact duration of the grant in tiis case is irreleant sincc i.he geonnetric di,,tri-

hution of the duration is mcmoryles (i.e. independent of how long the request has been granted

V- %

Ol ,, , o ,, r -,, r ,,, ,q , , .- , , ,.w" , - .,'., ." , ., , .- '... .. . ...',, . . ,. '. .'. .. . . ,.f ,. % .. ...-. ,e,, d,,e"l,
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so far).

When a grant at a slice terminates (after one round flor a nill request and one or more

rounds for a nonnull request), it new request arrives at that slice at thc heginning o1" the Iollowing

round. We denote by pi the probability that a new request is fbr a destination i slices along the
Ringhus from the sotrce slice. i =--(S/ 2-1)... -1, 1, 2, . S1/2. As before, negative
values of i indicate the cotnterclockwise direction around the Iinghus from the source and posi-

tive values of i indicate the clockwise direction. We denote by p0 the probability that a new

request is a null request. Thus Pi- for i*O.

Given some current state, the next state of the Ringbus depends on the prescnt state, the

decisions made in the present state, and the new requests that arrive in the present round. The

states of the Ringbus thus comprise a discrete time Markov chain. The state transition probabili-
%

ties depend on the state and the decision made in that state. Note that going from the present
state to the next state has two parts - a deterministic part and a random part. The deterministic

part is dctcrmincd by the decision in the present state: any requests ingratited in the present sute

or corresponding to grants still in progress in the present state mist appear in the next state. The

random part is dctermincd by the new requests which arrive to replace the grants which ter-

minated in the present state.

IEor convenience, we number the states with consectutivc iteger- t.irting from I and we

number the possible decisions in each state with consecutive integers starting from 1. We denote

the one-step probability from suite i to state j by p1 where d indicatcs the decision made in state

i. I)cnote the decision made in state i by d(i) and let 1)=jd(I),d(2),d(3), • ]. We call the deci-

sion vector I) a policy: it specifies the decision made in each state, and thus completely specities

the operation of the arbiter. We consider only stationary policies, i.e. policies which arc indepen-

dent of time. In addition, we consider only policies in which there is at least one new grant or

grant in progress in each state except for the state with r -O for all i. (A new grant is a grant

which has a duration of zero so far: it has been granted lor the first time in that state. A graint in

progress is a grant which has a duration so far of one or more rounds: it has been granted lor the

first time in some previous state.) We assume that pi is nonzero fo r all

i -(S/ 2- 1), ' • - - 1.0,,. •. ,S/ 2. The above restriction on admissible policies and this

assumption of nonzero probabilities ensures the following:

1) All states in flice Markov chain communicate - i.e. the n step transition probability from state i

to state j is nonzero for all i and j and some n>1. The Markov chain thus forms a single

closed class. ,

2) The Markov chain is periodic.

%% -
,= i-.%
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'I'licsc two conditions ensure that die finite Markov chain has a stationary steady-stW

(licorcm 2 p.29 of Kkeinrock 1K31). Oc)note thc steiady-state probability (of being in state i under

policy 1) by v, 1.'Ilic wr are given by

VI !)x ! and 20 = 1 (3.1)

We call the number of ncw grants in state i Linder decision d(i), the reward, which we

denote by q~i(I.*Thc average number of new grants per round tindcr policy 1) is

where 1) [(I ),d(2), j. [ he average number of' new grants per round is thc throughput of die

Ringbus. Our objective is to find die maximum throughput, goIpI, and the corresponding- policy 1).

subject to giveni constraints on the dcosions and for given probabilities.

Ilie constrainits on tie decisions Fali into three classes which we termn logical, topological, and

theoretical. 'The logical constraints, which we discussed at the beginning of sction 3.2, impose cer-

tain basic conditions on die Ringbus segments independentL of' the arbiter algorithmn and Ringbus

design. [he topolug~al constrainis impose the mappinig fromn a request to the scgnmts required

for that request. Different Ritighl,, uqwh1n4os, anid in parlicular different )ccess pathis, can be

expressed in terms of different request *.) segment mappings. The Asymmnetric Ringbus and die

Symmetric Ringbus differ only in dicir miapping of counterclockwise requeISts to segmntIs: the
,\svmmnctric Rimgbus reqiries two more segments than thc Symmectric Ringhus. T[he theoretical

constraints ensure smooth application ot the Markov jai decision ilormnulation. T[he limitation to

stationary policies is of no concerni sine any real arbiter implementation would likely operate

independent of time anyway. likewise, the limitation to policies with at least one grant in every

suite (except for the state with r, - 0 for all i) is of no concern since any optimal arbiter would

obviously have at least one giant per round whecrever possible. Without this limlitation, the Miarko-

vian (decision problem mnight have multiple chains and transient states. % hich complicate die

analysis.

Th1-e optimal throughiput and corresponding policy of thie Markovian decision mudel of the

R1ingbus can be solved uMini; H owa rd's policy- iteration method 11141. We develop some preclim--

inar results following I lowatd 11141. Ir future use and then we present I loward's algorithm.

Suppose we ran our Markov. chain nmodel of' die Ringhus with rewamrds for ni rounds under

sonic policy 1). Lc.t V,1)(n ) denote the total expected reward (i.e. total nnimi of new grants)

accumulated over the ni rounds diat we start in staite i. VI'(n )obeys thie recurrence relaition:

I4)0 ,1))~ (n) q, 24~ 1 11,1~(m I, ,C ,i> 1(.3.3)

%J
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where I is the set of all states. I loward has shown thai Vi){n) has the asymptotic form

Vil(,t )- tlg) i as ,'g t-.00 (3.4)

vi represcnts the value of starting in state i: vi v , i~j, is the difference in the long run

expected reward due to starting in state i rather than state j. Substituting equation 3.4 into equa-

tion 3.3, we obtain

i

If there are N states, equation 3.5 represents N simultaneous equations in N + I unknowns.

We rectify this situation by subtracting vi) from both sides of equation 3.5 and regarding g) and

the vi -v as the unknowns:

g ) -( Il) -l )--qi(')+ ,p(( )v v) (3.6)

We call these vi -Vi the relative values. We can solve equation 3.6 for gi) anJ the relative

vatues. Note that we now have an equivalent form for g...

I) II
.. J

Howard's policy itertion algorithm is the following:

1) Start with some policy I).

2) Value Determination: Use the d,(i) and qd(i for a given policy I) to solve
) -VD)-iva~Q vP--qi(  150 (i ) (3.8) .;.

for g l and the relative values v VI  
-OM

.  

"" p c€"" p

3) Policy Improvement: For each state i, use the relative values v,- v) from the p S

icy and determine the value or %alucs of k which satisfy:
max( q + -

))

qj (3.9)k ) j"_

If a unique value of k satisfies equation 3.9 then set d(.) k. If two or more values of k

satisfy equation 3.9 then cidier one such value of k is d(i) or no sticli value of k is d(i). In

the former case, set J(i) d(i) and in the latter case set f () equal to in arbitrarily chosen

value of k satisfying equation 3.9. The new decision in state i is d(i).

4) If policy ID is (lie same as policy 1) (i.e. ir )* ( i) f i iil i), tle! sto : I) is the optimll-'

policy and g is tho opfiimi average rc , ard per round. I . pOlic\ DO is ht l C S01 fC .1 , polic

N ., . ..- .:Z%.'-.: ' ..: ; % % .:: % .%- .- ... --.-"-
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I1. then set 1) -- D) and go to 2.

With precise arithmetic, gD increases monottnically on each iteration and I toward's algo-

ridim temninates ini a finite nunbcr of iterations 11141. IHowevcr. truncation errors can cause inde-

finite cycling of the algorithm in a machine implementation.

i,

'.d!

V, .

41

.° .
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3.3 Optimal Arbiter ror Four Slices and (,ratt D~uration or One Round

III this Sction we investigate tile optimal arbiter for tile Symmnet:ical RilIhuS With fouir sliCcS

and ia grant diiratio1 ol' onel round. In this case diec suite description is

(r 1.r2.r3,r4)

where r, 1. 0, 1, or 2: i = 1, 2. 3. 4. We assume that the request probalbilities arc synmmetrical

with respect to tie direction airound the Ringbus, i.e. pa IP =p Thlere are 256 suites in this stite

description. However. this numnbcr can hc reduced by tking advantage of the abundant sym-

metry prescnt. There arc two types (of symmectry present, which we teini rotational and flip. Ilicsc

symmetry types airc most, conveniently viewed geometrically. ImnagineC tile RinghUs rcprcscnitcd by
four node% (each representing at slice) connected by arcs; (each representing ,, bus segment) to formn

a planar diamond shape which has three axes of symmetry: one perpendicular' to the plane and

two in theC plane of the diamond. Rotational symmetry refers to tie symmetry about the axis per-

pendicular to theC plane of the Ringbus. [Flip symmectry ref~ers to the symmetry ibout one of the

axes inl die plane of tie Ringhus. Blecause of tie rotatonal symmectry it does not matter which axis

ill die plane is Chosen for the flip symmetry axis. Ali example of each symmetry type is illustrated

in lVigurc 3.4.

rot31C nl)
.'iout -about

ax is ax is

4. . 2 4. 2 4.. 4. 2

3 3 3

(00. 10)(- 1.0,0,0) (0,0.1.0) (0.0.- 1.0)

(0) Rotational symnictty (b) Hlip qymmeclr)

F~igure 3.4: Rotational and flip symmectry

Sine thle request probabilIi ties are identical for each slice and symmetrical %kith respect to the

direction a round the R in-bus. by) employing both i-otational and flip s,\tnrnctr all eight staites .

± .00.) (±1..) (00. 1.). ().O.0.± 1) can be ,CeuI to h, equli\v]lnt to ( 1.0.0.0). I 11W, we,

can replace thlese cigli states by a sinleI eqLI len Ct ',[.ItC ( 1.0.0.01 .\ C et racti11g .1l 1 d,1ilableI

symnetr , "L OCI entuil ly UP \Auith a' total 0f 43 stmets. I hcec stotes .ric litcd in Iihle .1 1 1ong
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with thC number of original suites which rcduced to each equivalent stilte.

State Numbcr F&qLiukaleI! Stale Reduction lactor

I 0000
2 I -1 000o 8
3 2000 4

4 -1-1 00 8
5 -1 0-1 0 4

-6 0 1 0 4

7 -1020 8
8 -1100 4
9 -1 200 8

10 1 -1 00 4
II 200 8

12 2200 4

13 2020 2
14 -1-1-1 0 8
15 -I-I 10 8

16 -1-1 20 8
17 -I I -10 8

Is -1 2-I 0 8
19 -1 120 8

20 -1 2 10 4
21 -1 2 20 8
22 -1-1 0 8
23 -1 12o 0 8q

24 I 2-1 0 4
25 I-1 20 8 1

26 12. 0 8 ,
27 2-1 2 0 8
28 2 2 2 0 1 4
29 -1-1-1- I 2
30 -1-1 -1 8

31 -1-1 -12 8 -

32 -I-I I 1 4 5 )- .

33 -1- 1 2 8 s-.
34 -112 1 8 '.

35 -1-1 2 2 8

36 -I l-I 2 -%.

37 -1 1-1 2 8
38 - 1 2 2 4 -

39 -I 2-1 2 4 .

40 -I 2 1 2 4 -

41 -1 2 2 1 4

42 -1 2 2 2 -

43 2222 I

Tablc 3.1: Suites After Symmetry Extraction

"lh1c optimal arbitcr problcm can be expressed as a Markovian decision problem based on

these 43 states. We number the states as indicated in Table 3.1 and solve this problem using

I loward's algorithm 11141. Iigurc 3.5 stiows de gai (i.e. the mean number of grants per round) e" ,

for various values of and/)I (Il P 2 (pP -2 2).

it.
5, , 
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Figure 3.5 Optimum aj.cragc number of grants per round for

Symmetick Ringbus Aith four slices ind o'nc roUnd grant duration
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Regardless f' the irolhiliiies /I and p?, the optimum decision rule in all sLites coi,;is(s of' the

following two stcps:

I ('onsider only the icquctst %sioet for each site thi have the gicatest number of requcsis.

This amounts to maximi/ing the immediate reward in each site.

2. I)ecide which of the request suhscts with maximn iminmediate reward to grant. ('Ibis is

trivial if there is only one such suset.)

For ldl sLites except 20. 4, 3. 8, and 40, and regardlems of' thc probahiliuies Pl and p2, the

requ.st subset chos n in step 2 of the decision rule is the one that has the most request.s of the

longest length - i.e. of' length 2 (where we define length to be the numher of segments required).
F

loi tles 20. 34. 38, and 40, tile request suLset choscn in step 2 of the decision 'ulc depends

oil the pib, h lie, p I and P2. S iltes 211. 34. and 40 each have two request subsets with maximum

inimc'die rckaid as shown in the diagrams in Figurc 3.6. .,

** 2
,% ,%d

-2 .• . o".I"-.'W .'."~
(a) (bi

,St~c 20 N,:.oununu rcw~rd rC(iLK:'Si s uhbt,

-.'

(.0l (b)h',,,

SF,

.'h "
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0N

4 9 2

(a) 
(N)

Stnlc 40

Figure 3.6: Sonic possible decisions in states 20. 34, and 40

Two sets are associated with each possible decision in a staitc: a grant set and a lcI'totvcr set.

For a particular state and a particular dccision, the grant set consists of all Ihe requests that arc

granted and null request Iibr each of the ungranted requests. The leftover set consists of :,1 the

requests not granted and nut1ll requcsts for each of" the granted rcqucsts. For examplc, it' request

subset (a) is Erantcd in state 20 (see Figure 3.6) then the grant set is (0,0,1.0) and the leltover set is V

(0.2.0. 1): i' request subset (b) is granted. the grant set is (0,2,0,0) and the leftover set is

(0.0,1. - 1). We can write R -- (;d+ I.d where R, Gd, and I.,/ denot. the request, grant, and lert-

over sets respectively, -/ deiotes element-wise addition, and th subscript d indicates that this

decomposition of R depends on the decision.

The leftover sets associated with request subsets (a) and (h) in Figure 3.6 arc the same for

each of the states 20, 34, and 40 (using rotational symmetry l'or state 34). Thus the decisions in

h'ese three states anount to the same decision: should the leftover set be (a) or (b)? (See Figure

3.7.)

A%

I eizover .cl rrom I eflover so from -e

requcot suibset (a) requcst subsct (b)

IFigire 37: I.Cftover sets associ:tecd With request subsets

an:) (,,h, ,) Cir ,':mc'h ol the three states i I igure 3.6

%.. .0

% %. % ~'% * *%*
V .

L ," ,,," ,, ,.,.''.,,.''.'".. ,'.2 V -. '".-'"-.''.."".'"-.''..','','-.' ,,. '. '. '.,' ",.. ', " ", ' _," _," -_. - -.- - .. .. - ',"-.c
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Of course die decisions in many other groLps Of st tes Other ihan 20, 34. and 40 are related

through their lelho)er sites. 'I he Markovian decision problem can in fact )e kirmulated in teris

of lefle'cr sets rather reqiest sets. Ass iming that at least mie request is granted in every request .

SCL thenumher of states required call be reduced hy this alternate firinulatiOn. I lowever, the

transition probabilities are more difficult to determine and die problem structure is less intuitive in

this alternate foirmulation.

State 38 also has two request subsets with maximum immediate rcward. "licse two request

sibmets and dheir asmsiated leftover sets are shown in Figure 3.8.

.

I' 10A

I cflover set. (a) LIRfi~er scA (h)

Figure 3.8: Some p)osible decisions in staite 38

Notice die subtle difference between leftover states (it) atid (b) in Figure 3.8.

The regions over which request subsets (a) and (b) of Figures 3.6 and 3.8 comprise optimal

decisions ate showni in Figure 3.9.

IcI
00~~, a..2 --. , S* ' i-

aa % % %

M •. r % %
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Figure 3.9: Optimum decision regions
5 ,for states 20, 34, 38, and 40

States 20, 34, and 40:

Request subset (a)

"D Request subset (b)

State 38:

Request subset (a) .9

Request subset (b) otherwise "N
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T1o the right of the line delineating request subset (a) and (b) for states 20. 34, and 40, step 2

of the decision rule is the sane as that mentioned earlier for all Ihe other stites: grant the request

subset that has the most requests of length 2. In other words, leftover sel (b) (of' Figure 3.7) is a

better chic' thanI leftover set (a) Ir p1 and P2 to die right of the line in Figure 3.9.

We now investigate the regions over which request subsets (a) and (b) Ibr states 20, 34, and

40 are optimal (assuming optimal decisions in all other states). Of course the exact regions over

which each of these request subsets is optimal can be computed by applying I loward's policy itera-

tion algorithm. lowever, the policy iteration yields the optimal decision fbr only a single point -

and thus the extent of the regions must be determined by the behaviour at many sanple points.

This is. in 1I4ct, the manner in which the regions shown in Figure 3.9 were established. An analyti-

cal form for the boundaries of the regions would be much more usefutl, but such a form seems

intractable. Instead, we consider an approximation.

The basic idea is to approximate the relative value (i.e. -v ) of a state i by the iinmedi-

ate reward, qd(i) in that state. First we number the states as listed in Table 3.1. Since dhere are

no genuine requests in suite 1, the only possible decision is to grant all the null requests. The.

immediate reward, q1 , is thus iero. The transition probability, pij, is simply the probability of the

requests arrihing that constitute state j. For example, if the transition probability from state I to

symmetry state 19 (1- ,1,2.0) is p tq = 8pp () ,. (Thcrc are 8 ways to go from state I to the ,sym-

metry state ( 1,.12,0) - this is the reduction number listed iii Table 3.1).

Equation 3.7 thus reduces to ,

(We drop the superscript d(I) on p u since there is only one possible decision in state 1.) Substi- P-.

tuting equation 3.10 into equation 3.6 yields: ,,..

V- V /I 4) -1 I(P14 -P IMx j I)3.1).

Now consider I/)(n) and the recurrence relatiou expressed by equation 3.3. Let 1'"I(0) 0 foir all

i. The dilTerence VI)(n) 1/1)(n) is

j I(, t '  ,,

a,l

-) ..W, I dk/ .;dfd(r).()( .2"- -/ '

'' 2",, A1 ' 0 ,'.,' *
DPI11" P, o :Aq

,m-'-5(-2

. J111

. " -... %
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4;10i) 1)d H.)( A.
m---O j k

where pj1 (im)") is the i. step transition probability from state j to stat, k: q7(O)=II j1)k(
I)ij 0Ij}k

A1)(,, 1 1)- iqp ) 'P ,(m). As ,,- 0 . , (n) - V '(i)-. vl) - v 1 by equation 3.4 and thus
I

v1  q - + q(;P,, ij)XPi j01,)Dqe k (3.13)
m A j k

We now have two alternate Formulations for the relative values v II
-- vI: equation (3.11)

and cquation (3.13). I:.quation 3.11 provides a way to calculate the relative values and equation

3.13 allows an interpretation of the relative values. We see II'll equation 3.13 that I) v is the

infinite sum of prohabilistically weighted rewards. Rewritten as..

00 00
vi v q I -'P dk. 1

I) I) d~i) ~ IX I4 oi~p n ) qk .-i~P,,k (111)1) q~IA (3.14)
m 0 j k it0 j k

our earlier interpreation of viI I  i as the difference in the average total reward starting in stte

i iclative to stating in state I is obvious. (lquation 3.14 can be generafiied fbr vi . VII.,

l'qtimon 3.13 suggests that vi -- v cait be computed to ,rbitrary accuracy simply by stim-

ming enough of the terms on the right hand side. One w::y to approximate v, v ) w 1 hich we
fow pursue, is by th," first term of its infinite series expansion. i.e. vil)V1qd This approxi--

mIalion has tile merit of avoiding any cotmutation with the tansition probabilities. Of course 'U
some accuracy is lost in this simple approximation. However this merit is %cry important when the

number of states is so large that it is a great deal of work to compute all the transition probabili-

ties. (Such is the case for six and eight slices as discussed in the sequel.)

In some cases the approximation VI) - 11) qd(I) is exact. Consider those states i in which

all the requests can be granted simultancously withou~t conflict. We call the request sets of' such.-

states immediately grantable and we denote tile set of such stAtcs by 1G. It the decision, d(i). in

some state iEIG is such that all the requests are granted, then the leltoRer set for state i is the

same as the leftover set for state I. Now if two states k and / have die samc leftover set, then
p /'lI) for all j since the next state is entirely determined by the leftover set and the proba-

hility distribution of new request arrivails which is the samc foi- both states. Ihus if d(i) is such

that all requests are granted, then pd11 ,PI, for all j. I-quation 3.11 then implies that
ViII  V ) qffti).

This prvious result can !,c pcnerali/ed. icnidclr iny' two states i 11d 1L \th decisions ,I(

ad 11(j) suclh that hoth state, ha the l,mle cfto'cr set. l hen /,' / , for All k ,1d
, ..&''

I ,,: .. ..=. ,,-. ,,,. .. ,0
,- .,,.,-. ., - ,,,,'.,'/,. .. ,...- .-.- , .. .. ,. .- .... - -, , - .-.-. . - -. ,. ,, -;.- .' ,..'-..' ..-. , ... ,-_
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VI I) - qd(i) ,4(j) This result li)llows from (he obvious generali/ation of equation 3.11 to

D.- 1' 1) q, .P1 )- d N1

k

Ilie detennination of all de relative valucs vi  v% , and hence solving For gI), thus amounts to

determining the diffcrence in relative values of states witn different leftover sCIS. This is consistent

with our earlier observation that the Markovian decision problem can be exprcssed in tenns of

leftover sets rather than request sets.

Since the relative value in state i, vi- v- . represents the difference in the average total

reward starting in state i relative to that starting in state 1, (which has only null requests), it sems

intuitive that viI) - V1 ) should never exceed the number of genuine. i.e. non-null, requests in that

state which we denote by ni. We iound that indeed vi' v) )_<i fbr all states i for every case we

investigated for floor (and six) slices. We were unable to establish if this inequality is true in gen-

eral.

We now return to our approximation vi) - V1) = q; (i ) and the determination of an approxi-

mate analytical expression lir the regions corresponding to request subsets (a) and (b) in states 20.

34, and 40 in the four slice, single round grant duration Symmetric Ringbus. Request subsets (a)

and (b) each grant the maximum number or requests possible in each of the states 20, 34, and 40.

'llhis the choice of requc; .subset (a) or (b) in these three states does not depend on the immedi-

ate reward: it depends only on the leftover sets. For a given policy I). request subset (a) results in

-in improvement in die throughput if .

. S.-
and request subset (b) results in an improvement if

where i 20, 34, or 40 and we have cancelled the immediate rewards from both sides of the inc-

qualities. Approximating vjD - v 11) by q/V), we have:
-, *ohI

,& Y,(P.(,7) P.(b))q(4U)

If A>O then request subset (a) is best and if A<O then request subset (b) is best. Since we

already know that the optimal policy consists of granting the maximum number of requests in

each state. q/(i) is equal to the maximum number of simultaneously grantable requests in state j.

The leftover sets from requ,-sl subsets (.) and (b) are shown below.

'.
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%
*44

rcq4ucst qih~ct (a) rcque.1 %uhsct (b)

Figure 3.10: I.cflovcr set% from request suibsets (a) and (b) in states 20, 34, and 40

TIable 3.2 lists dhc possible next states (without symmetry removed), tie immcdiate reward in each
suite. and thc transition probability.

Iovefrover Set (it) I.emllt rr Set (b)

ext State Immediate Reward Transition Probability Next State Iniinedate Reward

.3 P1 .
-i, 2,-1,-I 1,0 -1,-I,!.-! 3 ,_._

,2.- , 2 P OI -1 -1 ,, L 2

-I 2,-1, l 2 p -l , 1 2 2

-1 . - 1, 2 2 P iP 2 - ,- 1 . 2 3

-I.2.0,0 - 0. 1,0 1

-1,2,0, 1 2 Poll'1 -1,. 1, 1 2 ,

-1, 2,0,2 2 POP2 -1,0, 1,2 2
-1.2, 1,-1 2 -1,1,1,- 1 2

-1, 2. ,0 1 PoP I -1, 1. 1,0 2-1 2, 1, 2 , -1., ,1 3

-1. 2. 1.2 2 PIP2 -1, . 1, 2 3 J .

- ,2,2,-1 3 P1iP . -1. 2. 1,-i 2

-1. 2, 2.0 2 POP2 -1. 2, 1, 0 1

-1. 2. 2. 1 2 PIP2 -1. 2. 1, 1 2

-1, 2, 2. 2 2 p -1.2 .1, 2 2

Table 3.2: Rewaids and Transition Probabilities fir I)ccisions (a) and (h) "
in States 20, 34, and 40

A fter some algcbra we ebtain 
%4%

,.'- a,%

%
3~ % 01/ p , ,% " ", . ', %. % %*,Y .% ' .'.- ,' " . . ."• ,"," '' ','.' '.€ , , -"
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2A:- POP 2 --POP--PIP2 -P I

whkh can be further simplified to

2
I-p -p,- 2 p P2i-P2 -P2*

The boundary between the regions for request subsct (a) and (b) is given approximatcly by A -0.

This approximate boundary is surprisingly close to the exact boundary between the regions is

shown in Figure 3.11.

We are not so fortunate with the boundary between the regions in which request subsets (it)

and (b) in state 38 (se Figurc 3.8) are optimal respectively. An analysis similar to that just corn-

pl fcd ir states 20. .14. and 40 and again with vI - 1,1) approximated by q/(i) fFor all i yields

A PI('I P)- ThUs tIc boundary betwccn the regions fir request subsets (a) and (b) in suite 38

is approximated by P I-- P. This approximate boundary and the exact houndary are shown in

[i urc 3.12. The large discrepancy in these boundaries indicatdes that 1" -, 1 is not it very "

good approximation in this case. This is to he cxpccted since the difTerence between Ictover Sets

(a) and (b) is very subtle (scc Figure 3.8). We expect the average reward per round to le almost

the .tite for request subsets (a) and (b) over much of the p -- P2 prohability space. Of course,

greater ;-ccurac) in estimating the boundary can be achieved by using more terms of equation 3.13

in the approximations of v I)

Zee

.... ". .

-P~~~ .0 1 .. ^.

, %°.

,I--

_, *,*

.'.5 ,'

*5 lr% *

5,S5,

2, 2 J C . 2 . . g " ., . '" '."'.' ." ,"..':",,.''2¢" " :, :" '..: ":": ." : " .. " . .. .':-2.':" "-2.,- ". : : " . : " .."2.," . *. *C 5.
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Figure 3.11: Optimnum decision regions

* for states 20, 34, and 40

Aprxmtebudr Exact oundar

Request subset (a) Request subset (b)
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Figure 3.12: Optimum decision region

for state 20

Approximate boundary -------

\ Request~~ Exact boundary -*---

~subset (a) ...

x\X

Request subset (a)

Request subset (b)

0 .1~ 1 .2 ii
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We invesligatcd the approximation V 1i Vji:,:qd i ) ill two instances. In the first instalnce we .,

approximatcd the test quantity (equation 3.9) in step 3 of I lwaids pulley iicration algorithm by
.~)I . (li3.15) i

max( qi j)', q,1 p5) ,.
k j%

where qm!" is thc maximumT number of grants po;siblc in state j. We found that die decision k

yielded by this approximate test quantity reliably predicts the O)ptiillUM decision in state i in most A

cases. (The main exception was in state 38.) In the second insunce we approximated go,' by
g V jq, fPllfl. This approximation corresponds to granting tie maximum number of tequcsts

in every sute and ignoring ie leftover requests. The comparison of the calculated values ' g" .

and g'"' shown in Figure 3.13 for various probabilities reveals that g", is a good approximation to

g9, . In every case investigated we Found 0 <_ ° t -g(%'/ 0.22. Figure 3.13 ilso shows dhe

oplimun average nunbor of' grans per round for ; crossbar in terc onection of fior slices. This %

crossbar inlterconnection is similar to the Ringhus interconnection except for fewcr constraints on

which rCqucst siihsCts lMnV 11C granted. In flict., the only constraints oil the request suh,ets arc des-

tination constraints: no two requests that have the samc desti nation cain be glantCd Sill]Ln l tMaously.

Since a crossbar has fewer constraints than a Ringbus, its perf'ormancc %%ill alv,ys be superior U)

that olf aigIiui (pr, iled emcry th ii e ugoecpt for tile interconncCtinS iS the samC).

: %.'. %

II

-. ,-
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Figure 3.13: Average number of grants per round with

, 1.77 four slices and one round grant duration
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2. li)ccrnine VO( 1 1) for all i From:

The policy III round n , I is I~ )(, 1) - -.() where d( i) is etluiai to the decision k

which m.,xim1i/e% ie righ t hand side of equatiion 1. 16 for Miate i.

3. Increment n,. go to step 2.

I hc recal power o;f '.alue itei dti( n i% due 1o ii SO-~Llcd Odoni hounds 1011 which give tipper

1111d I; wci hi naid% onl the opt iiial it eragc reward per ro und. 'I hecsc limits im prov e onl cich itera-

Ilonl 'andCC c~itIII 111v C on' %erIge it) the optii'ial ateragt: reward per romid. I )e IIIne

6(01) 1 i 1 1(, I). I (it ) mil S'(11 ).1and I1(11 ) max 8,01, ). After the ii ",iteration of,

step 2 we havle

I III1C. the )if ci. I (11i)> I (oil ) anld 'Ii 11 1 '(Ppi ) for in < n . I he re fore ;I fer dhe n iterat ion of sicp% *1

li r way tic es'.mnmted 11 (i i i, I) As n) 0(0.)* A
2

Im 11 (11 11p1),C', 1111V 'IC ;i&Ii ak~o ha.mmmp!Cmmemmatioil ;mdh.1mtages over I Imiward's policy

I'lk Willi%111 .im wke; .1 i ly .torc di'. V(ui) hir ill states ind ihe requiest proba-

iiilawic, 1, 1I it .'.ml do. 'iin.m k aid .IVicel iewards. kaid transiitioni probab;Iilities, kl

,-Ill 1 . ti)(ItCIe i'i inh11C Witlh 11011"y Iteratinl. it Is, dillicucilt to solve filr i~d dhe relative %

A111141111 i Ii ~ I-,( tu,11g k ttltcd and stared all OIe (1, amid p,, Ifor a particular policy, which%

iqmiie Ii )I \tIil iit: minihrtinit ofLitc% is large.

( Ii 'A 1111 .lCm Icm0.,m1 tI~ll e t-11Ie estImat ofI~l( 01 ' om t(ime 11C sttiiaite of, th1C optimal

.I1, IN in, I [ ci '(it -anl he a, N111a1l as desired simply by iterating

1,1. . I It, iIi'~ hect(,i the iipper mnd lo%4ci h~ounds onlf inidicates the

m i. It 1 ii di 1k., .. hkmI .cul I X 1) 1ti Ind P

Ih, I i.i,1.0 I "Lii m % oe I ti (idemmmWin. w.% other komi miethod wouitld Also

i'p~c~riI !k''Iih'.~ AtIll IIowiid's mr~A tatimn %Ac %4Oild Im~i\ to LUSC iteralti\e techI

I.,A- IM Mi .llii'liiii~ N4.111111ii'1 t(I t01e llge set otf sI Ill tiiieciinis eqti utIois represented 1)v

Ind iii(1h tc gIn Xili ito s
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(rather than just thle number of' new grants in that rounld).t TILuS g is hetter thought of as the

aVerage nlUiibcr oif grants in progress per rouind. Of cours. if' all grants have dhe samec dtirationi of

one round, then g is also the throughput. We define die throughput is thle aieragc munler of

new grants per round and denote it by /. F'or a general grant duration diStlihuILion with incan d%

rounds, thc throughput and average number of grants in progress pcr round arc related by 1
i g/dl. Thbe throughput of' the Ringl)us is also given by tie number of slices divided by dic mean

cycle time per slice. Ibis yields thle throughput balance equation %

P

where - is thle mecan praKcssing time per slice (po is die probability of a nlull request). w1'R11 is

thle mleanl waiting time per request. (/ is the mecan grant duration, and S is thie numbler of slice-;.

3.4.1 lDetcriniiiistic Grant D~uration of 2. 3, and 4 Rounds

Using taluc iteration and Odoni's bounds. as described earlier, we obtained estmates of die

opt imial ai ermgc nunmber of grienus in prour@ ,s (uti~ tally related to the iii Iotioh put) and~ estilmtes of

thie opt ioal policy Air file Symnievctic H im-hu wit (IeterimisZbc framit di erationu of' 2. .1, and 4

roun1ds. Fi 1i rc 3.141 shows the opt imal ivcr~igC nlumber or giants in rorc f~ r these three caes

and, for grant duratnins of one round. as iuvtibgated earl ier, fi'r seiccied piobabihitils. A ll tt~esc

estinlates, except those 111,arkied with an i,,tcrisk. are withinm ±.(X)5 of,; opt ial. ilie i~tm itk s idct

eslimratcs For -Ahich a tolrance of ±.00J5 ilas not ochieved after 1 00 iter~~mons. 'ilhe m na x unm

error in these estimates, ats (letem mined by the bounds I 1.(E) and (100). is ±.0 175.

t (beice 1% 110 IhLoI (:iIl rca',or 0o pit-Ici one of thcse( -..'o t i I N, h rl tiird (,%t I i othk r with 'Air uicflog

hoo, the ,,olig ut i \t!11 % ikgiar gtcu i'uiu.1 pluicll H l o..icr.i ;uilm. tit I- m'' ti I t It Isci 7imid

'A~~i i ii' giho t r diliaI,u Ili. vil I i t dIII 1
1
1 IAIIII liuu I i. .r.c 111 Iiu1fIilli 1r 1 .Itl11 1 114t~ ~ , 1 1

101,111 d i 1, 11[i M I-IkIpL.IA r I .lk 1 Il.!L di .1~ ,I Sh~ It Ili LJi 11 It I tit I l. . titAi 1 . t 1 . -11

it) Iliiir ouur diiiim~ ii fiv Iu' llg~ r hei oli- 1 1 illu lu u rg 'n li i t. 1,, %Jm .1''tl'ilgd '

itcrjcd fasici iiih (gAir uictimlion

%V

44i. i,
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2. 21. Figwrc 3.14: Average nu~mber of grants in progress
% 14 per round for deterministic grant durations .
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Note that( the optimal .avcr,:! e nmbr ofi grantls Ii p' gress (which we will call simply X Ii

thc rest (if wtchion 3.4) is .: slrion-, Ijmicton of the grom cluiioia. d hII P(j i% lrge - i.e. light

liw ~diig. As lo'o d-crcases. tlic pi ,;i dtirktion hai~s le-,s effri t in );. In I'.it. , I' pl) . g aicars (0

he indciPen:ut of te grant dutt ion (it deicimi su gi it diii .ititi). I hew observaitionis mnake

Intuitive wnsc. When p0 is Iairge, nottnill m~qisl.ae rmuc mid o~cur wialmost equal IikelihtKi

regairdlcm of' d, I'lhc dincsice i% that the graints laist longer [Oir largei d and Ihus contrihute moure

it) X. When poj is silI. the K gn,-hti% i% neairly s.in mmd widh nionmill iequests% every fround and%

thus I/ has little effkt onl g. Sect ion 1.4.2 ex~mii,,s dic-w ohsersam ins with niorc igo uir.

lk-cmiist: ot the: largf: iiiniher tl si.ites. espet .111) fm i d 4. i( is irnturb~ toiie disims here in

kd4eItil theI csIIIII~i'ted tipliinai dec t iis Ii c.kh Im stle r d ?. 1. ind. 4 himi&t'i Ae will Jut dist.uSs

tiieI 111.1,1 trenid 'ii vic tli ini the c.tiiiiudI pmitt det isuttus. It wAis cith.nisting entliillh Iot t'.IailiW

.11 11iC %Itats 1411 tiltIS innsi hahiliti ie t, Ictiimi: thus trend.

I h tli ic iiftm is Ote tllit tg litrcsuimg obers.mtitII of tlictiffle% (lt, C-4tiitiCIt.l tptitiimi

t:,11,llt110211" ;tt11ttiti1 1i -,:,1 111t~ ;1.111 l Ii tila tit' Ifil t i stv s I sI les wit \1 v tih , Il .4 sim i li tOff

At~s I, th. ,iai

1 11 11 1 1) 0 0, S

I'ti*l!

I I I t Ii at 1) 0 t 0~

III,~~~~ ~ ~ ~ ~ Ikjl " III (lit I . $111 1 t It Ill IIt I nd -j 11'ito tliim k\ 111 I d A

' ' i m I, ) l , 1 1 l %I V 111111t ,I I ' Ik (I k A*/ li t I I 11 l 1 4 1

kj'p

%H 
ItS.

I'P F e.,. . .

% % %
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T[he l",s thain the maximnit reward tenidency is most pronounced thor heavy loading - i.e. small po %
Miad large &1 [or light loading - i.e. large /Y() - the estimated optima-l decisioin in every state grantse"o

the imiximumn reward. :Pq

An explanation 1'()r the iihslervcd tendencies is that there is a tradeolf between the i iediatc "

contrihution to thrighput otined by granting a request and( the possible Ruture dcgradaion It)

throughiput caise.d lhy die constraints iniposed on fluture grants hy granting at requiest. For a giant

dtiration of d rounds, any requiest granted imposes constraints on which requests maty he granted I-

inI the I/ I rouinds, after it is firkM granited. Iir light loading it is unlikely that at non null requnest

% Ill arm 'v llithin (I rounds ()f granting at request Mnd dtus the FuitIre degradaio n caused by giant-

Ing requecsts, is niegligil. I hecrehuOre the traeof is III I'iaw 4a grntn requjests imnindiiiely and

henice thle iciidcnc\ ilwid guaningi lh\c iixinguin rvwad hIm light Nlading. [-or heavy loading. it

is %ei, lik that a iniill icequest will arin e %in I/ rounds t gi .nti a request amd ilitis (lhe

111t11iC degi id1tion u.iiisedi hy giiiiting requess can be icry significant. Ils degi~id.itimi can he S

Iet-ili. 11,o~ .1i10iditig I.1agi d111ilceC.'s I iiite (dlliaiioii tln~i dilleiit pgils. tl1i1w htcii III progless.

State" III the flust kix's fill tile t%() iiieiitioiled C.irliei ) ,ictiewe this hy IIot prin1ting my~ requiest.1"

In hc.I% tu'adiiig ,'ddititlii.iI noiitilill reulltis hill likely amw %~ cr-y sOii ). 4 it ilAes better

iiA.k' 141 *I'A IR .i 111 lLI.4. Ick4iiii ~ .111 g:.1:11 5Lit15CE. i e Iiii"I s i t.11 ' uii ti l e 1 gl i. i e iital

Ikil' s I ,I , 111p 1h.11. NI 11 .l it, fll, 4h 111 , L i .'1%() I d ilI t i ci ; InS dw4 U111ra4 l l Ili' [41114. 5 Ilii. p iy s

t" i .In ) isk ll iii.W III It'.Ii 1ii *i I 4 ,ci~~ i 4% 4.' Ii p aille III Il4t4Igics 44 II4l 1.111k5

I i t4 t I4 I 11JIptw). itik .1& 11 11i ku u i f ii (Ik' ,.Ii.t gI(I Iit sI i' 1111..' ii s. 4 4 ' 115 111(11 4144lilhs

it %

%.
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-

F or any partictilar policy (i.e. sct (if decisions inl each stalte, all tlhe dci vatives; of' I with MN

respect ito tile probabilities %ill h,, continuous. I lowever. the opinumn policy cani %ary with thed

prohahilitics. 'Ilus the optimum throughput over any portion of' thc feasible probability region is.

in gencril, at piecewise combination of' the throughput of the optimum policy in cacth subregion.

[he derivatives of' ifl with respect it) die probabilities will not. in general, b~e continutouis at the

boundaries ill the subregions. F ortunately. the number of' dislcootinuities along any ray is finite

since there is only a finite number of' different, policies. Strictly speaking. is not defined

at1 SUILh a disco ntinuity . hill it ima be defi ned to have (he aloje of one of the policies at the point

of disci minliliy. In this sense. I i% sit ictly positive For all 1?Along a ramy (except possibly

at the end points).

It Is Also obvious that <0for all p() along a ray, except pvrhip% am discoiitinuiti4.s
<N 1 0 .

at the boundaries of the subregions corresponding it) different polk ics. (Recall that the opitimum

polic) can .iiy w ith the liii babilitics. Nowe also that2 is not detoned at such diseonfntivi

tie%). Withvil 111) jmaticular1 stibicgion along a tay. the rate of' iircase of '"iwith I I;( - i.e.V,-

decvases as I /)( itciass sice dhiie ;ire fc~ei tiull rI\4oemt to ie)lkc b~v nonitill

d( 2 1o)

wioc-AiSt (and thkos increcase i")'t) asI,'~mem. I H eince. *<0) within the miubregzion

.ild thus t"' Is CoMe x downi in I /,( with in eaich subregion along any rav. Note that it doe% nlot

1,01141% [romt tis tha~t 1"', is Coime% downi e'.ery where lokng ai gi-ven ray. even if is

mcdlcinud ait oins ofl diAcinmiiimlm Iii 10r, is monotenit. in 1I' j .vuv c~lAheic along at

rhi and convex &,%v~n i, I , ilhm inl souibrcgioni aong a ray.

.1.4.2.2 hoiuids on hei Opt iniuii I hrouighlmt Ailh Ilet iriiuil ic (.raiit I urmtiom'

I ctI I~ '1 k l eno t hc l 1C optl)( lliioii( lgpilt anld tile opt ittitdi 1v.19C mmoimlbei of,

~t Iii'fit I' ll 'mm 1cfiS;)k'~tli cl tilli gliw m it h tim dememimmi stit dtifi; i ito />1 I rowi d mud lito ime

set itIiiiiiohbiitics dcmI \ h itemj 11v I"~ (N is tOe mmmiimm1%l'm I l s ) siitiil.11lv let OIf

(knotl tei i l~te 10t1ii1,11l hlloiighpiit .mmvi l-117*1nia ivm ge 'mimitci Ill 'I pit er i'-id eZ!

lk ( k h k ci f ic l .11 )ll dijl o Ill the w tii l .11a fmmbilli c i ll ISol.' i lic I;' l 111

% %

U ~~~ S . .4 E'I'',*I*.,*i .'.
%. %
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optimal throughput with d>1I can be no mnore than (lhe optimal throughput with d 1. 'Ibis fol-

lows since for at fixed set of' probahilitics the op~timal throughput. cannot increase ats di increases.

1bus

<1 or _ _(V

F~or (/> I it is possible to grant at least the same average numbher of' grants per round ats for tle

sitmc set of probahilities for tI 1. The argument is ats folIlows. Rcstrict thle instants at which all

new requlests - even mill requests - For d> I canl be granted to the beginning of every dh round

in synchrony with somIle clock of' period d rounds. (Note that nutll requests have at grant duration

of one iom id and vioniiull requests have a grant duiration ol' d rouinds. Restrictin the granting of

nuill requests to evecry dI rouinds synchronous with the clock ilt' period d artificially lengthens thle

granit duration of a ill I request to d I rounds.) At the "arbitration instant" atl thle beginning of' each

suiccessive inter~ .l of d round% (synchronous with the clock of' period dI). graint the request sublst

corresponding to thle optimal decision for thai request set with d I and Elhe same set of' pr ihahili-

ties. [hle result is anl arbitration allgor-ithml fin. J> I which is exactly thle samle as tile optiiial 11 hi- 5

tralon algorithmn with dI 1, the same set of' probabilities, and at arhiter clock period of' LI. I hilt is,,

by

1) restiicting thie iiistanits ia which new rcquests - even null requests - can he grinted to every

dI rovn(fs S) nc I; 0ni Lu With so me cloc~k of'pnrim dLI and P,%*

2) using- thtis cloc k (If pe' iod d as' thie arbiter clock,

the irbin ii i proh~eii redoces to that f'or dI 1 . TIhus

d d

We c.ill anl arbiter ilgorlttim that operates inl accordance with point I .nhome an inler%,il algo-

rihn. We L.Ill the opltimm ilgorithin suhject to tis iestriction thle optimili inter%'il .ilgoliithml. \s

just disc ossed ihmc. tht, outinl wter\,il al1gor-ithm is exactlh the same is id ichiec,,e the saime .

throiqflipiit is thle optiliil .ilgiim for dI 1.

I hewo lo% Vj holun.I oil nd t'> can be ligh tened h rerniing thle i csinkntoni that
null requcsts ci ()ill\ I gimited it the begining of' every dI rLLklid\ s~nchionouiv \kithi thle clock -

intcr it ilI perinod dI. hislead, let null mi'qiests be granted immediaiil %Ahene~er dlie.% occui i%as . .

thie cisc il mir ii ignin oninioiliimion inin the m-arrimlon proleill. Ilmin%&eem. tis ifects thie pn imbahil %-

ity Lif rcquests ins seen h\ thC ( mstn td) .i iter cetv mihitaimminmI'ti. I hie t restn1ICnltf) mrhiter *

ses 1n 11il1 e~que-t Mit 'll i ~ thnini~nin ihli'tiit i1f thereC 11.1\c been esictiv1 d ii! eqnsc~ snc the LIst15

v l io)')
r'fmtwNt % un1 ii il p l hil i l 9 ii In I ' r ii? it'(iniL'Nt Ofi leinItll In ~. I ji Illi li

0I j~
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'lbcreiire

9 q or t?'

'i ' pill0-(pD)d) IiS2 "

where po':Apo)- and pi - i _ U
"Illis lower bound is easily seen to be tighter than the previous one since -P0)>0 for

every P0 along any ray in the kIasiblc probability region.

The complete bounds on the optimal throughput for a deterministic grant duration d>l

rounds are:

!d -I < I < .d> '...d I

or I. I <

P1(1 (PO)
where po (po) and p, I <i <S/2. Note that these bounds aic expressed con-

pk'tel) inl termts of the optimal throuighput fiui (I I which is a much simpler prohlem than for

(I> Io(II.OW~ t ) ':

Id I approach dicii respective upper hounds as~ po 1. This canl be shown ats lol-
PP.

lows. We ha~c

I'0 ""-"'.- -
~d>I RWgf I d) d -I

POpo#( Wgh I3)

,( Io; p) , "d)"

po

1>> I
lIiaking the hl a% /,I-1. Ir which ,'I 0 and K' . 0 ,3 A , hm I 'id•f a I 

, l.-

d. im 11.1Z I Io pn~ lie Cofaeepoll.%l

nu hei " gr,in(s per riumnd tir lighn shoh , n in I :igme 14 . 0rL . '1 v.ih Ihs liter

restuIt. I lls, I .",ilt J Litic, l Itilti1C ie.:,lC l l ll ill %ken i l 1 4 i I fH the Strltl I.! ilt u i N' .

% 1h d fr light leadilng.

Siniilir ,,l ,! a I.1nd I/,,. setil hi *IrlliI.i lhc'i i ,) ,t ..1.1o'0: lh, d ( hlld, .Ii ,u

gemctd II, the Ic",ilt,, 01 /,,.t iii I inl I 14 h) .N , .lmd 1 I t i,! 4 wkmidt \ , ' hui k b
t

,VP
I 4:

I%
,- - ,- - , , ,- - - . , , , .. . . . . , . ... . .. ... . . . .. . .. . . .. . , .*.* . ,''] ]
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to prove this conjecture. '

1.1.2.3 Approximnating ithe Optimal ll1iroughputl with lDeterntiistic (,rint Duiration

If d. the grant duration, is large, die number of states reqUircd to c~luflate g 'j>I is very

large, miaking its calculation difficult. A more attractive approach ror I. 'rgpdi o.pp(xht

d>IIn this subsection wc present a simple approximation to gd> aIn dy = n I h leo

d. Since 1d is trivially related to this approximation ailso applies (although indirectly ) to
d>1 >

rati ha th Iolowig popetiesalog aray
d> I

1) It is a con)linotis Function of I po.

2) tim d Id

3) hill daf 1)/d
POp

d>1I

IIIh. an Ifitno two ist (litCN iii'tat li

I1

jj If '!.1 N.1N
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Jd=4

Figure 3.15: Expmwim~aI approximation and atual %aues of
(4m(mum pin along sonte rays rtw d - 3 and 4 and S 4

0.0

A4- - N'ctua -%alue% a"~ rat p 4p
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41>1

I of d1 I he apii ia i olici c-'tiiIa(C' h.ilo .ihoill, /)()>.I F or d 4 die approx imlationl

J->. I

Sk01%1' 1g11 iindci 'Wd lifaC Itiir a.ih t in,()<.1 and otihermisc it sli ghil Im 'restimates ie

'At do n ii k no % hat pci foi 'mnck% to expect of the ipproim~ination in equat ion 3.18 for

largcf %ILc% of S mid .1 IIo~iwcr n it 1%s 11l0ea that the approx imatioin is roughly correct:

J,

Asd';iac I ir~t ii I, i mpic (o cakiluitc. Second. it reduces dhe detennlination of ?~ to

Olk d.1, 111 11111 ti~i it L: s u~ implvi prohiemi. Iluis second id' dntigc cannot he over-

%1A~ 0 1I .11gc '1 Ji1li11Kk ili cmtibgh to deterimne g1. .as ditciisse~d later in this chapter. let

600t v~~! I Jc i ihtc iiimiideit ol il% isapter (eCCIud4I11gr tie IILX IWo SUhSeLClions 3.4.3 and
r

-141 .. Ilk L01InsIde 1111 N igts*tt 1 d1111nPot to equai~tion 3-18 for treatiiint of aihi-

4riv (rint ihuritkit

I "'4c1 i I. rI .I I,lr i I toi the Il~i I sl icc, nicrnre[- c Iti nghus Ii~ i th geometric

Lw ill klo N ~ hc ics dt--ki'pton I,, dISCLusscd cmt ier foir .i decl-riiisoc grant

m n d~ 1, 111iflicluq d, ( 0 .o I) as, ib. number of rounds that

mtc vnc. picted 1, as, I boolcmii l,ahio inrdicating whether or not

liki , I ;,i the: piciedni . tomid. If a Qwc*e\ request *.as granted in thle preccd-

r~~~~~~i..a,11C~ III OWi ciitIO ~I ttdi t IFiCeIt imind] tt prohability prbconi and it ter-

. ' tt 1' th,, kini nt d %i~i th piohiilitI, I prbcont . l-ins dic giant dura-

it t I I .'i 11i TJN ht,i I red k-,t Irliati. of the optimail averiage

r''~. ,. r.rr xs rst.'sirlmic' I , I"h.L' Cpiii ow or- pi)~1( il .()()1,. 5, .75. .9. F.ig-

'.' -' 0*i. IM 11. I nil i ri it II .ni i rI0LeCs pci iound br these Ibur cascs

d k4r, N, P Ib rhilit 1, 1 I re. C',[ in1ac10 11re I, ILu11 ±(005 of, optimal. -

% -
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1.18 Figure 3.16: Average number of grants in progress per round V
I.,.' .'fl for various geometrically distributed grant durations
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r.tk% wi .Au i om I. th, ,ill A ,t - 1I I I, ,1 1

Ai 'Ai til u,1 I ti lI l It lf IfII '1 [.1" -1

m ) uId illth ti 4 i I.11: A c kI hAI,, l l. i) 'l

(c-11 1m sLn i 1. I':d prNil ,: a g i itimoct IllL A101 N. I

(i C. pt IA vi Ii

3.4.4 O1hll G.rant D urit imil D istribuitionis

We cannot say much about the effect of other giant duiration distibhutions without further

study. Hlowever. wc can gi'c tile Following generailities .ihout tie optimum throughiput with any

grant duration distiiuion:

1.) Along an ray For which the nonnull probaibilities have some fixed ratio. 1'P is nmonotonlic

in I - po evcryvlherc along die ray and conIvex down in 1 p0 wihin any siuhregion (i.

within any region in whic:h one particular potlicy is optimal) along thle ray. TIhe argument to

support these two conclusions is die samne ats that given in setioni 3.4.2.1.

d
2) If denotes die optimal throughiput with some grant duration distribution with meand

and some requeCst p.-obabilities po, p l, ps/2 denoted by - and if' d-deot-1h

optimial thirotighpu)Lt with a deterministic grant duration of one round and the same rcquest

probabilities denoted by -/I thcn

kid 1

4%
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4 0%1ifi I4 . oil A, f. t l4 0,41 it, .11 1 it A,1(. 1i s , ii ~ .ill;, 'is i i . 444tok4 ( M o it, I'%

Ir, 1 45 -5 d ) III A 41 4 4 it ii ~ I. 11 aif's. - Ii 4 14 5144l *41111 -MC4 ii%I .1

I . I,. i . do4ll Ill I.,is l giI.45ll411 1Is'.*4ihf .0 4141 .,(g, 154lk1 64tl i (-I's 5(41lil4 I (of

I 4 s., isllsM, I t445 111, )I,.Iio4 '1111 1,-llill 11~iai 111 1i iil 'A v 11t14 itiiii't (is

111, lott',P I $( I II it I i f )-' 414434 / 'l 4) u i ir4Ili fil i I- %~ 1 1 1i ilold%

V.4: 111k. 11l.131ii1kill ic*i.ild m .ilc I Iifit to)4% q jl SI i v, \.irpi t%migl ght od e%timm~ie uof ijhe

'I1110;-l l buI I lpuLm I'P Ill c'Clif L1*'' Ill 4t"..t4 .1d %L' t0illid I I <I"Pr I,'%' < I3S. (Nut all ill'

iI1.'s Tcstli-. tic shown Ini t iglik: 1.17 il4 .imid illiitcnii Aie ligiii. Ili all k.ise's. cxut I'm Nowu

IVNo, bp

I <,1I

M ere arc t.Ir too mn) ,Ites Ito deteriinc and .nily/c lte I iptifliat decisiton regions. as we

(lid for four stiLes in sectiont 3.3. Iurtherniorc. [le dcision determined b) the value iteration do

not4 niCCessirily compise)~% an1 optinitl plicy - thcy on~ly com~prisic all es ilule of' (IC optimnal policy

- so it is best not) to examfine themt too closely. TIhus we will only discuss Oie inaiin trends in (tic

d1ecis;ions. We wilt also discuss the perfiornnaice of somec rule of thilll policikcs.

.J.

f) DU and VAX arc wIrdcimrks of thv D igital Ikliiict ('ni Porainoi.

:kAs d ictsciicd in sein.141 3 4. ai polIcy deterimi ned Via1 vatLI tic ia! n is 41141 a only (41 in the sciise that the-
Ilrtiirtwith thal po~licy is within some41 iinterval. c' cit i ihc Moll: bouiid',(i 111 li stiimal 11isilughput.

.4 % % % " %
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,,, Optimal throughiput

Estimate Of Optimal throughput:
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Ilie most interesting treiid in die decisions is that, unlike the cas.., lIr liur slice,. it is, m %,

always hest to grant the request suh.t with the mixiinuin nUilihr of requc.ts (i-c. rcward). 1-,r

evely ,LL of probabilities considered. %we lom id at kast 011C stite III w hth th.k "n.",iIled OptlimIal

decision is to grant some reqtest subset having l--ss than the maxiiinl reward. I lie nuinber of

states with such estimated optimal d-cisions is small for po large (i.e. light iraffic) and increases %

ral)idly as p0 decrcases (i.e. as traffic increas s). The most rapid increase of (lie numher of these

statcs as P0 dccrcases cxcutrs for probabilitil's in die P2 - p plane - i.e. for p 1 0. ,.

One state ill which we fiund the estimated optimal decision to grant less thati the miximun %

reward is (-2. 3. - I. I, I, I). The subset with maximum reward is ( 0. 0. I, I. I. I). I low- .,

ever, lir every set of )robahil ies we considered. the estiimated optimal decision is to grant the

subset ( 0, 3. 0, 0. I. I). 1 he request set and these two subsets are pictured ill thel digrims in IFig-

ure 3.18.

~~~~Maximum) rewalrd .,ult wt I..nimaltd oplimal do.'xsion"-.,

%%

,ftover I flover"'

S%-

Figure .1.1h: A ni example of'" a request set tibr which the estimated Optimal ..-.
decision is to grnMt less ti tile maximum number of requests"

Note thiat the requests of length 2 and 3 conflict. IFviden~tly this conflict reduces the value of' tie--
leftove¢r of the maximum reward sub:set compared to) the ValeC Of the leftover of' the estimated '..

optimial decision to, i degree thlt Cannot he overcome by the larger reward. An additional factor J,.,

is that both rcqticsts in tlh c lelhover of thlc m a;.Xim rInl reCwarld Subset are long req ueCsts , hI heavy,,

traffic long rqtiss ".cost" more hian Sh(,t reCq uesLto grant since they involve Ihloking a1 request

Front each of the one or two slices along the route Which the long requenst is granted. This factor "'''

0 N0

%% %" 4

, ." , Cq , - . . , .o

' P ' ',' ' S u'.~ x . " - " •
-" . .- " - ., ." , "., ' '., .'' ".','' '. ,.'' ' ', ,' ', .,'? , -,.-" -. ,, . '- ," "0 ,.-0,,- .. ',-,0



sectvs ll ri~t~nll~lc il tle LdC Illlitikhthet--limacd quiimi dl mim . l, pmil th.

the mixmum cw~rd..111MKI -. 1c. i-ilc mot(oflim midititic , Il %itit oil.. I Al
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Riagbus Modcl15

F or all the sets of. prohathilities investigated. the maximum number of' segments c( nitraint

only caused it notable i~uct ii in in through put For p large. /p ,:z. and p Ismall to mediuml large.

I hIl is Ilhe 5. ne regioni (lzi ralic. iiiiiI .hort and long reqi lests) for- wvhich dic i xiniurn

rewagrd constraint caused the rno-.t sigiicant ieduction in throughput. lowever. the maximumP

number of segments constidint never caused ats large it redutction in throughput ats the maximumli

reward constraint. In fmc. the reduction in throoghiptt w ith thc mnaxinmm number of seginents

.onstraint pros ides ion efllicient compromnise hetween tile conflicting desires to grant thc maximum

liuimber of' requcsts in at state and mninimni/c thc waiting time of' long requests.

One might conjecture that the optimal policy grants die reque~st subset in each Slate with

either [lhe maxinmm reward orl the maximum naunher of' segments. I lowc~er. this conjecture

seems to lie falke in generl. It is indecd true that for most StatCs and for miost pr'ohabili is. the

cstim ued opt imnal decisions correspond to either thie maximumi rewaid or the mnaxinnin nmiher of'

segments (or hoth) request suibsets. As po decreases and 1p increases. thie number of States in

which the estinmated optimal decision corresponds ito neither mnaximutm reward ort niinmn

numbher of segments increaises, but it never exceeds about 90 SWateS. Iwo typical States inl Which

the estimaed optimum decision is olten neither the mnaximum reward nor maximumn nomber of

segments subsets are (2, -2, 3, -- 1, 2, 1 ) and (2. 3,.- 1. -1. 1. -- 1). For tie tbrmner slale, thie

requ~est subsets (0. 0, 3. - 1. 0, - 1 ) and (0, 2. 0, - 1, 0, -I ) achieve the niaximun reward and (lhe

request subset (0, 0, 3. -- 1. 0. - 1) uiniqiuely achieves thc mnaximium numbher of segments. F or tile

Latter state, thie request sLibsets ( 0, 3. -- 1, - 1, 0, 0) aind ( 2. 0. 1. - 1. 0. 0) achieve the maximumi

reward and tlie request subset ( 0, 3. - 1. - 1. 0. 0) uniqueCI ly chieves theC n1,liaximun num111ber of Seg-

ment.s. I lowever, the estimated optimumli decision in these two ,tates is often (-2. 0, 0, 0, 2. 0)

and ( 0, 3, 0. 0, 1, 0) respectively. Figure 3.21 depicts diagrams of' these various possible decisions .

in dimc two states.

% % % % % %
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Vhc reqtie't siih,%.-ts 2,.0 ), i 0. 2. 0) mid ( 0,. 1, 0. 0. 1. 0) MoI% m 1 e ickliwcas (41 he

graned in the romnd ft1lo~ tg (hie %tate! ( 2. 2. 3. 1, 2. 1 ) .nd i 1, 1. 1. 1 \~

ti ll (tiinc o'iter reqtuest %ibsets ,Ilow .1( kC.is 2?qi I ImN ekL~~~ 011 il. ploI.1hIlics

of tile arosrequests., 1thC ed o: not gramiing [lhe 11iiiutla nomilket I- cquWsL t Ill \uhsei NU5.

2. 0. 0, 0. 2, 0) aitd ( 0. 2. 0, 0. 1. 0I) Lan he compensated to some decu cc lp poshk grming
more requests in the fllowing round. Of comrsc. thle rclani~ e alues w, I l o id's policy

iteraition ilgoiaim (which cain also he estimated by I ,(n, ) I Cul ll thie \ILIc 1tio aIlgot ihrnl)

give the exact degree to which one requesi tibset is preferaible oer another.

A possihie rleI of thumb For thle decison in ecich ,Liate so as to uchw\ 11 eit.'-opt inliall

throughput of' the Ringhais is t grant Somc reCqkles t sbset itli/ing the Iimlumt numtaber of seg-

itints. As we disc-ussed earier. die naxatatuim number Ill segmients Cotuir.iiit (111l\ shlli 111 .iects %

thle Optilmal throu1.ghiput. A miur precise rule ofl thtilinh polac Olt we aa'ecttgited is thek tllo\fIll g.

Ill each state grant Somie requiest subsct that:.

1 . utilii'es tile aaiaxlilllta i number of, segmlents.

2. has thle maximum nutmber of' requests subject to 1, and

3. has thle mal~ximumli number of the longest requests subl-ject to I and 2 (i.e. a request subset " ith

recqucsts of length 1., 2. and Iis piefi~rablc tW one With) requeLIS0ts of leuili 2. 2, andJ 2).

Cons.traint 2 set yes mainly to ieduce thic litalme of' el-ihle retetsubsets inl e.ieh state

'A hule keeping die reward large. Constraint 3 nisures that long requests are granted befiwc shorter

Onecs (for subsets inecting constraints I and 2).

We in vestigated thius rule of U iumh policy by decteri iii ig thle estimlated optimnal li rotigliput

skibject to dicsc three constraints fhr the 91 sets of probabilities with P t. P2, and j) some integral

multiple of .1. (We used these same sets of probabilities whecnever we calculated the throughput

for any variation of die Ringbus model with six slices). [For every set of probabilities considered,

the estimated optimal throughput Withi these constraints was close (within =- .009) to the

estimated optimal throu~ghlput Willi julst thle maximum number of segments eanst4raint. Further-

more, in the vast majority of' states there is onl~y one reusi ustta et osrit .2 n

3. TlhUS. these constralints fu~nction well in reducing thc number of' possible decisions in each sLiteN.
without affecting the throughput by mnuch. Quite a few states remain, however, fbr which there is

still more than one request subsct meeting thle three constraints. Ani examination of these smates

revealed that for most states these remaining subsets are either' related by symmetry or nearly

identical. We believe that the throughpuit wotuld remlain essentially thie same if' for each state, the

requiest subset is selected arbitrarily from those meeting all three constraints. F or that mlatler. we

suispect that tile tlarougl put would reimii app~roximiately the samte if for eaich state die request

stibset is selcted arbitrarily fromn all those nIcetinig tile mlaxillmm number of sego tenlts Constraint.

% I~



1.5.l Iund% o1 uht llisnal lhroighpul

kc nioA d -,',hl '.'. hec dillelvll N ind (all lplr.' iIw I,) wm the i inoipma lhiotighp l ti tht"

rl,.h %. ( "C.I . ire:

I) the Righu, has ,)ninictrcal ,-i.es padihs - i.x it is a Sincin Roioghur,. ,%.

2) aill %lite, ha e identical icquejl prohalilities and geomctric.ly distrihuted processiig times ( s

aisuned Ill Ax.tIon 3.10. aid

3) the duratlon if all grants is i ,ingle round.

All of de hbonmds can he extended to dcal remove these restrictions. I lowever. ,all Ote exten- -

sions (ex ept tnin a symnetric to a non-symnctric Ringhus), complicate the calculation of the

hounds ,and thus make% the bounds less attractive.
% .%

3.5.1.1 Fioe Model Bound

I enote the rate at which requests - null and nonnull - arrive at the Rinlgbus (in number of

reqUestS per roiid) from slice i by A,. iause if our symmetry assumptions, X, is Ohe %IInle for

all slices, dius we sinrly denote the rate by X. [he rate at which nonnull requests arrive at the

Ringbus from a slice is (I -- p0)\. 'l'herefore the throughput of die Ringbts is S( I -- p0)X, where . e,

is the number of slices.

We now consider die r ate at which requcsLs are granted from a slice fhr various dCstira.ons.

This ratc may be likened to a glow: nonnull requests flow into the Ringbus from one slice at the

rate (I - p0 )X. The flow from a slice to a destination i segments away is pi,. t" We assume that all

requests of length 0<i<S/2 are granted in the shortest direction and that requests of length

S/ 2 are granted in die clockwise direction. Thus this flow divides in accordance with the clock- P'N. -

wise or counterclockwise position of the destination relative to the source.

S/2 pl. S/2
The total clockwise flow over a particular segment is (I --pO)A I .,-- -- X i pi. Simi-

i -I /- 0) /=

larly the total counterclockwise flow over a particular segment is

0-po)A X ........ A i pi. Thus the total flow over a particular segnient is

S 1 2ipi S/ 2PS20....... + --- 0 - POW.
0 -( PO) (1 -P0) I..-:,.,

where - is de average length of a request (in terms of the number of hops or segments required)

f The probability thait 1 rcquct is for a mtIlMintlimon i 'SnUi'Mils ;iWa\ fromi the Mmii('c. e '. ien that the requei is

11/111111 --- i.,0) )i-.ddin a flow of 0 (I - p10 A -P \ %,,nnuis(I- Ip0) (1- /p0)

4.~~~~~ ~ ~ ~ -P- - % % . .. j

Z.
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given that the request is nonnull. Ily symmetry arguments. the flow is identical on all segments.

l'C totl flow on any segment must not exceed I (i.e. one granm per round). Thus

(I pIo),/ <I and therefore

top, < "

Illis hotund is best for heavy traffic - i.e. p0= 0 - but cvcn then it is not that good.

'lbe throughput of the Ringhus can be written as

S

I PO

where is the average processing time (in rounds) and i" is the average waiting time or awhere 0 -p 
"
-

request (again in rounds). Since w>0l, we have q

<'(I-P0), -"

Sicidiung a tighter hound for fight traffic, i.e. p0-I. 1Thus

1'i ' <.S' min 7 . (I -1)) (3.19) "

The cfrec.s of segment and/or destinationh conlicts must h, included to get more uscF6ul hountd.

3.5.1.2 Crossbar Bound

An alternative way to obtain an tipper bound on the diroughput of thc i tnghu ,, t) '-1

sider a simpler model. One such simpler model is to consider oinl , the dcit u ,f , i-t ii

other words, ignore the segimlelts tht a request requires. V .%,) I ,,y 1I

tiuns. and ignoring request w iting till s, the stitiC des,.'llT1tm) of ,,i',. .i In .,, 1 ,

x ~~~( ,r?. • * r

where r, i,, the destination (1, . . or f) of the t-quk',t it \,

ill requcst I IL 1'tisih", N11C %l-k n.0 .

s iccs ti c dcii, 1lll ntl t c Is ')1"lld th h o, I

A i1'e d lr w+i.!l i)i ,m d+ . t,.t Ji it+' , , t ,

rk'qtl),.',,l.~ S II- 'IhI'.ft 
) 
, .1+ ,
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190 Ringbus Model

can be only destination conflicLs, this simpler model can be viewed as S XS nondiagonal cr(shar

interconnection. (Nondiagonal means that there arc no crosspoint switches along the major diago-

nal.) 'Ibis crossbar model has the kime state d.cription as the Ringbus model discussed in the

beginning of section 3.5. The only diflbrcncc between the two miodels is in tie constraints. The

Ringbus model has segment and destination requirements for each request and the crossbar model

has only destination requircments. Thus the crossbar model has fewer constraints on which

requests may be granted simultaneously i.e. it has more immediately grantable request sets and

fcwcr request conflicts.

Ilcrefore merely by changing what constitutes a grantable request subset (a request subset

in which all requests arc grantable). the same computer prograin can be used to determine the

optimal throughput for both the Ringhus and crossbar models. Iigure 3.22 shows the optimal

throughput for selected probabilities for the Ringhus and crossbar.

The optimal throughput of the Ringhus is close to that for the crossbar when p0 is large (i.e.

light loading) and when P I is large. For most other probability sets, and especially for large p3,

the throughput of the crossbar exceeds that or the Ringhus by a great deal. This is to be expected

since the cro.sbar does not have any of the segment conflicts which comprise the majority of the

conflicts in the Ringbus.

The chief value of the crossbar bound is to allow a comparison between the perfonnance of

the Ringbus interconnection scheme and that or" a crossbar interconnection, which has the best,,

.pcrflOrmance achiei able.t The crossbar bound is. of course, a bound on the optimal throughput of

the Ringhus, but it is as difficult to compute as the optimal throughput of the Ringbus itsClf (since

both he Ringbus and crossbar models have the same large state space).

" Whcrc ihe inierconneclion msl be circuit-swihchcd with S sources and S dcslinations.

P % "PL

..

* "-,, , r, e ;, ..,*a 
.
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192 Ringbus Model

3.5.1.3 Number or Segments Round

Another simple model of the Ringbus is to consider only the scgmen's required by each

request and ignore the dstination of each request. This model captures the essence of the

Ringbus better than the crossbar imodel but it still has the sane large state space and thus is use- ,
less fbr obtaining a practical hound. In order to reduce the size of the state space we consider an

even simpler model of the Ringbus. Now we consider only the number of segments required by

each request and ignore the particular segmcnts and destination required by each request. For S

slices, single round grant durations. and ignoring request waiting times. the state description of this

model reduces to

(11O,1111,112, " " " ImkV/ 2) '

where on0 is the number of null requests, mi. [or I<i <1/2. is the number of requests requiring

i segments, Om.!<S, for 0<i<S/ 2, and Tmi -S. The only constraint on granting requests
i:O

is that de total nmber of segments required by the requests not exceed the number of segments
S/ 2

S. 'Ihus a state is immediately grantable if ' i m,:.S. The total number of states is

I, .S' 2-,-.,"-- I . S+S/2

For S : 6 this model has 84 st..tcs as compared to the 4003 states of the original Ringbis model

(after symmetry is removed). .

Figure 3.23 shows the optimal throughput of this model, which we call the number of sg-

ments model, and the optimal throughput of the Ringbus for various request piobabilitics. 'le ."."

number of segments model yields an excellent upper bound on the optimal throughput for light

traffic (i.e. P0 large) and for p .Z.8. The quality of the bound degrades as P2 and especially as P,

increases. This performance is to he expected since the immbcr of segments model ignores desti-

nation conflicts and the particular segments required by each reqtuest. 'Ihese two factors dominate

the performance of the Ringbus for heavy traffic and short request lengths. 1 he bound is worst

for p1 =-a., P2-=P3z-0. At this point, the nuniher of' segments modcl gives a bound of 6.0 on the

optimal throughput. whereas the optimal throughput of the Ringbus at this point is 4.22 (grants "'

per round).

All

&'b', (, ,,' 5'I 3_'-; 
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194 Ringbus Model

An cxaminition of Lhe estimated optimal decisions in each state of the number of segments

model revcaled the same general trend as those in the Ringbus model: request subsets with long

requests (i.e. requcsts requiring many segments) were increasingly favoured over ones with only

shorter requests, as the traffic increased (i.e. as poO). 'Iblis trend was most pronounced when p,

was large, P2=0, and P3 small.

We computed the optimal throughput of the number of segments model subject to the two

differcnt constraints investigated earlier for the Ringbus model: the maximum reward and max-

imum number of segmcnts constraints. Our findings again parallel that discussed earlier for the

Ringbus model. 'Ilie optimal throughput with the maximum number of segments constraint was

indistinguishable (within the ±.005 tolerance range on the optimum from the value iteration algo- --

rithm) from the unconstrained optimal throughput. 'Ile optimal throughput with the maximum % %

reward constraint was less than the unconstrained optimal throughput in about the ,ne region for
which the optimal throughput of the Ringbus model with the maximum reward constraint was less

than the unconstrained optimal throughput of the Ringbus model. (See Figure 3.19 for this latter

region.)

3.5.1.4 l)iscu sion

"lThere is usually a tradcoff between the tightness of a bound and the ease of its calculation.

Tight hounds tend to be complex and difficult to calculate while loose bounds tend to be simple

and easy to calculate. Unfortunatwly, the Ringbus model is %ery complex as evidenced by its large

number of states. 'Ibis suggc.;ts that any really tight bounds on the throughput of the Ringlus in

all cases will also be very complex and difficult to calculate.

'l'he bounds we investigated are examples of the spectrum of the tradeoff between tightness

of a bound and its case of calculation. The average number of segments bound is simple but not
very accurate. 'Ie crossbar bound is extremely difficult to calculate (as difficult as the optimum

Ringbus throughput itself). 'lic main purposc of the crossbar bound is to provide the perfor-

rnance of the best possible interconnection network for comparison with the performance of the

Ringbus. 'Ie number of segments bound is the best of the three different bounds investigated, S.'t

except when P I is large, in which case it is the worst bound.

The number of segments bound has a further significant advantage over the other bounds: it

yields some idea of the optimal decisions in the Ringbus model.

NS ,'J

'. 4
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3.6 Optimal Arbiter ror Fight Slices

In this case the state description with grant durations or oiie round is

(rir 2.rj. .... rR)

where ri- -3. -2. -1, 0, 1, 2. 3. or 4 as discussed in section 3.2. This yields 88 16,777,216

sutes. By utilizing rotational and flip symmetry in the state description, the number of states can

be reduced by a factor of less than 161. which still yields over 1.000.000 states. Needless to say.

this huge number of states makes the pursuit of the optimum throughput and corresponding

optimum policy very dificult for general request probabilities. lased on our experience with the

value iteration algorithm for determining the optimum throughput with six slices, we concluded

that such an algorithm would be impractical for eight slices with the computational resources avail-

able to us. 'The optimum throughput can still be determined rather easily fbr some special cases

with a small number of states.

One special case that we investigated is the optimum throughput along the axes of the feasi-
.. ..1le probability region (i.e. only one request probability nonzero). Figure 3.24 shows the optimum

throughput along each axis of the feasible probability region. Another spec. ial case is the optimum -.

throughput on a fce of the feasible probability region (i.e. with only two request prohabilities

nonzero). We did not investigate this case.

Bounds and appoximations are the only practical methods to oltain some idea of the

optimum .hroughput for general request probl)bilities. I lowever, some idea of [he P,_neral chma;c-
teristics of the throughput is also usClfl. We discuss Such Cl1JrjCtristics in secion 3.6.1. Any of the

bounds discussed in section 3.5.1 can be applied, although the Markovian decision formulation

bounds and the crossbar bound are not very practical due to their large computational require-

ments. We examine the number of segments bound in section 3.6.2. One simple approximation is

to replace all nonnull requests by requests of a single length closest to the mean requcst length
2p~ 1 4 P2 1-6 1)3 r4 P4

(given that a nonnull request occurs) I - ---- Another approximation is

lopt  ijqj "'. We expect this to be an excellent approximation again hut il is rather dillicult

to calculate. The difficulty is in determining q/ma" in each of the 88 states: Plj is trivial to (Icier-

mine.

t At best. 16 statcs - corr sponding to A rotations and 2 flips -cn hc weduccd to one statc 1 his rcduction fac- v
tor can onl he attlncd Ior citlain states with /cio m o ull icquc s ;mid /cro requc:ts of length 4

%

%1
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3.6.1 General Characleristics of the Optimum Throughput

The optiuini throughput is a function of the request probahilities i.e. 1°Pt(I, IP!,P3,1'4). In

this section we consider the general shape of this function. W,

3.6.1.1 Slope For Very Light Traffic 
a,

F(rom, equation 3.10 wc have t P'Yp IvA '-v n"'). For very light traffic, i.e. poz.l,
A

vfpt-v 'P'nk where Ilk is the number of nonnull requests in state k. This can be secen from -...

equation 3.13:
00-

Vk''- YT' ::k'' 2 Xp,,j -p j),F'P i(,,,)ql •
M =0 j I

:I ifj is a leftover of state k I jI
For poz 1,p 0 otherwise and pI j (where state I is the state with

all null requests). Of course q'pt =0. 'Ius

vk"'- v , ,' qkPt + qfP' + q Of, + ... "

where suite 1 is the leftover of state k, state m is the leftover of state I, etc. until the leftover is

state I with all null requests. Iherefore for poz 1 we have -

2P 1k 
'k

k

Now if pi--- for some I <i<S/2 where 8 is very small and positive and p= 0 for all j *0

and ji, then

I S If
Pik ,1k (26)"* (1-26)'Ilkl

optop
Therefore /"p' z2S8 and thus - =2S. Taking the limit ats 8-*0, we have - fior

apiap pPo-II .< '/ 2.."'" 2 .

IfpS/ 2 =S where 8 is very small and positive and pj 0 for all j#0 and j* i, then

k S n(la)S n ,

'herefore Pt=S8( 1-8)S-I=S8 and thus -l°Pt ~S. Taking the limit as 8-*0, we have

---- I 5 =S.
ZIPS/2 Po= I 2,

N Ne,,e%,% % %

, ' ", 3 ' ,, ,,,- ", ,',',.,-, .' . '.-' ',','%',,'.-. , " "" " ,'..',,.. . ", . .. '.". ..__ . ."a -_." . " "• 
q."'
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Note that these slopes arc reflected in the drawings in Figure 3.24.

3.6.1.2 Shape Along a Ray with Fixed Ratio of Nonnull Probabilities

For any arbitrary value of S thc characteristics of the shape along a ray arc similar to those

discussed in section 3.4.1.2 for four slices.
P

3.6.1.3 Maximum Points

some positive amount B. ('Ibis may require that the probability of other request lengths decrease.)

'lus there are no maxima in the interior of the feasible probability region: the maximum must

occur on the boundary. Obviously, the unique maximum occurs at p 1=.5 and the unique

minimum occurs at po= 1.0.

3.6.1.4 Shape Along Cross Sections

'Ie through)ut increases monotonically along any cross section parallel to the P, axis since
at >0. (I is the throughput.) Along other cross sections. such as parallel to the P4 axis, the

throughput may both increase and decrease. (For example, in Figure 3.17 the throughput

decreases as p3 increases for Pl .. 2 andP2=.I.)

3.6.2 Number of ScgmenLs lound

To obtain some idea of the optimum throughput of the Ringbus model with S =8 and grant

durations of one round for general request probabilities, we calculated the optimum throughput of

the number of segments model for S =8 with selected request probabilities. Table 3.3 lists the

results, which we obtained via value iteration, to within ±.005 of optimum. For comparison.

'[able 3.3 also lists the optimum throughput of the Ringbus model for the request probabilities in

Table 3.3 for which it is known. 'Ihese request probabilities (fior which Iop, is known) all .,o

correspond to points along the axes of the feasible probability region. Note that Inumber of+ c"n$ 's

is a pt)r bound for lt p for large p 1, as observed for S -6 in section 3.5.1.4. Otherwise, we expect
that 1 number of.wgrntis is a rcasonable bound for ti P', as observed for S =6.

S%

a ,, *I-%.
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Reqicst Probabilities Number of Segments Model Ringbus Model

Pt P2 P3 P4 number qi'.Wgmet. ntl_

0.2 0.0 0.0 0.0 3.20 2.96 ,..
0.4 0.0 0.0 0.0 6.40 4.94 -
0.5 0.0 0.0 0.0 8.00 5.63
0.0 0.2 0.0 0.0 3.09 2.43
0.2 0.2 0.0 0.0 5.23 '?

0.0 0.4 0.0 0.0 3.99 3.10
0.0 0.5 0.0 0.0 4.00 3.22
0.0 0.0 0.2 0.0 1.99 1.96
0.2 0.0 0.2 0.0 3.86 ?
0.0 0.0 0.4 0.0 2.00 2.00
0.0 0.0 0.5 0.0 2.00 2.00
0.0 0.0 0.0 0.2 1.51 1.32
0.2 0.0 0.0 0.2 3.75 ?
0.4 0.0 0.0 0.2 4.99 ?
0.0 0.2 0.0 0.2 3.00 ?
0.2 0.2 0.0 0.2 4.00 ?
0.0 0.0 0.2 0.2 2.00 ?
0.2 0.0 0.2 0.2 3.29 ?
0.0 0.2 0.2 0.2 2.86 ?
0.0 0.0 0.4 0.2 2.00 ?
0.0 0.0 0.0 0.4 1.99 1.90
0.2 0.0 0.0 0.4 3.20 ,
0.0 0.2 0.0 0.A 2.67 ?
0.0 0.0 0.2 0.4 2.00 ?
0.0 0.0 0.0 0.6 2.00 2.00
0.2 0.0 0.0 0.6 2.85 ?
0.0 0.2 0.0 0.6 2.50 ?
0.0 0.0 0.2 0.6 2.00 ?
0.0 0.0 0.0 1.0 2.00 2.00

Table 3.3: Results from number of segments model for eight slices

An examination of the estimated optimal decision in each state of the nmber of segments

model revealed that the number of states with non-maximum reward decisions increased as the

request probabilities became dominated by short (i.e. length 1) and long (i.e. length 3 and 4)

requests. Otherwise the number of states with less dan die maximum reward was quite small. In

fact, as long its pi and P3 were both small, the estimated optimal decisioit in each state almost

always gave die maximum reward. The optimal throui~hptt of the number of segments model with

a maximum reward constraint was ery close to the unconstrained optimal throughput excepL

when there were mostly short and long requests. Of the reiluest prohabilitics listed in 'lable 3.3,

the degr.idation caused by the naximum reward constraint was greatest (0.40) for p I-.4, P2- 0,

L .:.: :,* * * ~ * ., .- ...-. w . .......... ......... .. ...
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P3 0, and P4 -. 2). On the other hand. the optimum throughput of the nunher or segments

mdCl with a maximum nmber of scgmentL constraint was indistinguishable from the uncon-

strained optimal throughput inum,' of ~mnts fi all the request probabilitie. listed in Table 3.3

except for p1=.4, P2=O, P3: 0, and P4-.2. 'llis comes as no suiprisc since the cstimated optimal

decision in each state in the unconstrained case almost always utilized the maximum number of

segments.

'lese observations suggest that the trends in the optimal decisions for the Ringbus model

for S --6. discussed in section 3.5, continue for S =8. In particular, these observations suggest that
4% "

the maximum reward constraint has even a greater effect on the optimum throughput of the

Ringbus for S =8 than for S =6. reflecting the sharper contrast butween short and long request

for S =8.

.4-
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3.7 '11e Symmetric Ringhus With More Than Fight Slices

Any pursuit of the optimum throughput and/or optimum policy for more than eight slices

and general requcst probabilities seems hopeless. As the number of slices increases much past

eight, there even begin to be too many states to compute the optinum throughput on the faces

and along the axes representing requests or length less than S/2. (The number of states along

thcdc axes is 3 where S is the number of slices. Only 2S states are required to compute the

optimum along the axis representing requests or length S/ 2. '"Iis number can be reduced further

as we discuss in section 3.7.1.) Of course, the general characteristics of the throughput as discussed

in section 3.6.1 remain the same for more than eight slices. In addition, the hounds discussed pre-

viously, particularly the number of segments bound, can still be effectively applied (although the

number of states increases rapidly above eight slices flr the number of segments bound).

. ,

3.1.1 Throughput as a Function or the Number of Slices ror Some Special ('ases

Two special cases for which it is easy to determine the optimum throughput of the Ringhus

ibr a large number or slices are

(i) at an extreme point of dc feasible probability region i.e. at a point where pi ---.5 and pj -=0 .. e.

for je i f)r some 0< i <S/2, and

(ii) along the axis c(orrcsponding to requests of length S/2 i.e. p 0 for i= 1. 2,... /2 - 1.

Using rotational and flip symmetry, the 2"V states in case (i) can be reduced by a significant

fraction.

One cxtremc point of particular interest in case (i) is p 1=.5, where de maximiim throughput

occurs. We can easily obtain hounds on this maximum throughput for a large number of slices as

follows.

Let the number of requests in a round in the clockwise direction be denoted by ni., and the

number of requests in a round in the counterclockwise direction be denoted by it,,.

(#,.* -1 zn, S). Since all the requests are nonnull and of length one. we can grant at least

ma. ( ,.(k'",.,.) requests in a round. Imagine an arbiter which operates by granting exactly

litax(1,'.., 1'.w) requests in every round. Since an optimal arbiter can grant at least this number of

requests in every routnd, the throughput of the Ringbus %ith this clockwise-counterclockwis

arbiter (which we term the cw-ccw arbiter) thus gives a lower hund on de optimum throughput

Of the Ringhus for P 1 --.5. .'

An obvious state description of de Ringbus %,ith the cw-ccw arbiter is

(n I1.,nI,.o.

Ilowcvcr, we can rcduicc the iumher of states h) utili/ing the symlmetry between the clockwise

%% %'

P. r , '
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and countcrclockwise requests. 'litis we consider instcad the state description

(,n)

where in -- max(n,.w,. ) (i.e. i > S/2) and in 4-n :-S. It is convcnient to number the states

with n. n = 0, 1. 2. - ., S /2. lbc reward in each state is in. The one step transition probability

from state (m ni) to state (rn',n') is given by

2 4' I n "11. W_<S/2
IIJ.

where

a I qa! if a and b arc integers and b =0, . aa i1 b(a--b)!

b -0. otherwise

Ibis cxprcssion frr pn,," may be understood as follows. The reward in stite (mem) is S -n: hence

the next state has S - it new requests. There are two ways for this next state to he (i',n') if
n '<Sl 2:,"

I) it'--it (where n'>n) of tie S-n new requests arc in the same direction as the n old

requestL inherited from state (inn) and the state is not "flipped" (i.e. S -- I'>n ').

2) n' of the S -it new requests are in the opposite direction as the it old requests inherited

from state (inji) and the state is "flipped" (i.e. n '<S -n ').

"Iere is only one way for the next state to be n',n' if Wt'=S/2 since the state is never "flipped"

in this case.

Thc throughput of the Ringbus with the cw-ccw arbiter is given by lb

I --__CCW = ly'n(S - it)
H=O

where w, is he steady suite probability of being in state it. "he w, satisfy w,, ,'P,,
11'=0 "

n = 0.1. 2 ..... S12. and Y,,'" .

We computed t'" for various values of S: de results are listed in Table 3.4 along with

the optimum throughput of the Ringhus 1ir 4, 6, and 8 slices. Note that thc lower bound given by %

rP,

'e' -
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few-CCW is equal to the optimum throughput for 4 slices. The lower bound is progressively less

tight for 6 and 8 slices. We expect that this trend continues as the number of slices increases
cw -cow 2 V

further. As S-00, an average of 2/3 of the rcqtests are grantedt. hence - 2 as the
S 3

figures indicate in Table 3.4.

S (W Cw -W - oI

SS

4 2.833 2.833 0.708 0.708
6 4.154 4.23 0.692 0.705
8 5.473 5.63 0.684 0.704

10 6.792 ? 0.679
12 8.112 ? 0.676 ?
14 9.433 ? 0.674 ?
16 10.755 ? 0.672 ?
18 12.078 ? 0.671 ?'.
20 13.403 ? 0.670
22 14.729 ? 0.669 ?
24 16.055 ? 0.669
26 17.382 ? 0.669 ?
28 18.709 ? 0.668 ?
30 20.038 ? 0.668 ?
32 21.367 ? 0.668 ?

Table 3.4: 1" for various values of" S

We can obtain an upper bound ca, the optimnum throughput of die Riitgbus for P1 --,.5 and

S even by considering only destination conflicts. Number the slices from I to S in ihe clockwise

direction around the Ringbus. Odd numbered slices only request even numbered slices and even

numbered slices only request odd numbered slices. Ius. ignoring the segment conflicts, the %

Ringbus is equivalent for Pl =.5 to two S/2XS/2 crom.sbars -one connecting odd sources to

even destinations and the other connecting even sources to odd destinations. Fch or these

crosbars consist of' S/4 Lells as depicted in Figure 3.25. ,.'r

t Ior large S. if ii requests are gramied in the current round, then the average number of requests grnted in %- -4

the next round in , is the number of leftovers Iromil the current iound plus half of the new rcquess that arrive

iii 2
in the next round i.e. ' Il(l -11)+ In sieadv sla ic ne i. hence In - S.

2 3

%1. 00*,
.4, *5~4* ~, V ~ ~ .. V4' ' ~ %' . .' % '.'%. .~.. s'.P
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S1

Sourccs IDcstination,

Figure 3.25: A crossbar cell

Suppose wc ignore the interacions between cells. (The cells interact via conflicts at the destina- %

tions in common with adjacent cells.) lFach cell is thus independent of all the others. Under this
7

condition, it is easy to establish that the throughput of a cell is Icll = -. ' Me total number of cells
4

is S/2, hence

to,<S_7 =7.

24 8

Considering that this is also a bound oa the throughput of a crossbar with p <=I5 and S

slices, this is a poor upper bound Ifr the Ringbus. Ixamining Table 3.4, it appears that S

dccreases monotonically with S. This leads us to make the following conjecture.

Conjecture
L .'

Iet i J" denote the optimum throughput of a S slice Ringbus with request probabilities I,

i=-(S2-l), . S/2 ifS is even, and i=-(S -1)/2, ,(S-1)/2 ifS is odd. Let

tF+' I denote the optimum throughput of a S - 1 slice Ringhus with request probabilities

AS, lip , I1 , 2, ... S/ 2--I ifV iseven %

V+I= S
A P912. i=±S12

0. i=S/2 + 1

and

N5 il 0, 1, 2, ,(S - 1)/ 2, ifS is odd

10. otherwise.

Then, assuming grant durations of a single round, S < -- - .Note that this genrali/es to

SI
-C ?v '~ -O' I*j "M * *.N.O*
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Unfortunately, this conjecture seems difficult to prove. If it is true, then a much better bound on S.
the optimum throughput of the Ringbus for p I=.5 is

for i = 1. 2. 3, •. For large S the conjecture leads to
dop,~ ~~ r o0 4pt

S .8704 < 6 705 < 4-< 708.

It is not easy to obtain good lower boun. ,o,.1.e other extrcme points pi- .5 (i-S/2)

since the possibility of requests in the same direction conflicting introduces additional complexity.

One way to obtain a lower bound on the optimum throughput for pi -.5, 0<i</ 2, is to con-

struct a Ringbus in which all requests are of length I by deleting the i - I slices between every i14

slice. Of course, this is only successful (although it can be modified) if + is an integer. As an

example, consider S =8 and P2--.5. After deleting..--.--y sccord slice, we obtain a 4 slice Ringbus

with all rcquest% of Icneth 1. The throughput for such a Ringbus is 2.833, hence a lower bound on

the throughput of the eight slice IRingbut with p2 =.5 is 2.833. 'Ihc exact throughput in this casc is

3.22 (r~c Figure 3.24).

For some extreme poins 1i" --2. This is obviously true, for example, for ps/2- 1. It is also

true for pj; -.5 when I-I-2 (S even).%

The optimum throughput along the S/ 2 axis is easy to calculate for large S since the-%

number of states can be greatly reduced from the 25 mentioned earlier. If the only nonnull %

requests are of length S/2, it sulfices for a state description to merely describe the number of

pairs of slices with zero, one, and two nonnull requests, where two slices 180' apart on the Ringiis

comprise a pair. 'litus the state description is

(11,1 W 2)

where ni, i=-0, 1, or 2 is the number of pairs with i nonnull requests and =S12 (S even).

.S/2+2 (S/ 2 --2)S/ 2 +1) U

he total number of states is 2IS/2 I2 ,

A lower bound on the optimum throughput along the S/ 2 axis can be obtained easily by
ignoring leftover requests. (crtainly,

" l R

- . .
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I"1">2.Pmb(at least I pair has 2 requests) +

I.Prob(at least 1 pair has I request and no pair has 2 requests) ,

iP1 >2.Irob(at least I pair has 2 requests) + %

1- Prob(at least I pair has 2 rcquests)- Irmb(no pair has any requests)

Now Prob(at least I pair has 2 rcquests)-= l- Prob(no pair has 2 requcsts)r 1 -(I -ps12 2)S
1
2 and

Prob(no pair has any requests) =((l--psa)) thus V

,ol0>2-(I -ps/2)S2 
- -(l-PW/2) •

'Ihc throughput as a function of s gives some idea of the scalability of the Ringbus. 1Te

throughput varies with the traffic, as reflected by the values of the pi. This latter factor affects the

throughput the most: with p0 -O, the throughput can vary from 2 to somewlhere between 2,-S and
3

7
-S. The sensitivity of' the throughput to the distribution of request lengths is perhaps best illus- ,
8S

tratcd by the bound 1<-- from section 3.5.1.1.

* h
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3.8 TIhe Performiance or (he C'oncert Ringhus

In this section we inivestigate the perl'biance of the Concert Ringhtis and compare its per-

formance with that of the Synmmetric Ringbus. (We. of' course, have to specify sonic arbitration

scheme foir the Symmetric Ringhus. We do this shortly.) Ilhe Concert Ringhus has asymmetrical

access paths, and a rotating priority arbitrarion algorithm, as diseussed in sctiofl 3.1. 'Ihe investi-

gation and comparison consist of three parts:

1) Wc determine the effect of the ;Lsyrmctrical access paths by comparing the optimum

throughput with asymnmctrical access paths (i.e. the Asymmetrical Ringhtis) to thc optimum

throughput with syminetrical access paths (i.e. the Symmetrical Riinbus).

2)We determine the OR-ut of' the rotaiing priority arbitration algorithm by comiparing the

thirouighput with this algoritimi for the Symmetric kingbus with the optimum throughput lbr

the Symmetrical Ringbus.

3) We determine thc cflizct of both the asymmetrical access paths and the rotating priority arhi- '

tration algorithm (i.e. the Concert Ringhus) by comparing the throUghpu(t with these to the

optimum throughput with symnmetrical access pathis.

We considcr only lour slice Ringhuiscs. 'llcre arc, Unfortunately, too) many states to consider

k'taikov chain miodels lfor six or More slices. 'the state description with the asymmetrical access

pahs in part I remains%

(r1 ,r2 , 1 .0

where r, - --(.S/ 2 - 1), - . - 1, 0, .. . /2. but flip symmetry canl no longer be utili/cd to t

reduIce the numbecr of s;titcs bcause a r-ei-uest in the COtmnterclock wise direction requires, more -

segments than it request of at similar number or hops in the clockwise direction. Thus, for S 4 the

number of suites is 70, an increase of about 86% above the 43 states for die Symmetric Ringbus. A

similar increase- for S 6 would put the number of states at about 7400. This number may not '

seem all that unreasonable. H owever, we felt it wats not worth puirsuing part I foar S 0 if' we

could not also puirsue parts 2 anld 3 for S 6. [he state description with rotatiing priority is q

where p, - (p / k ) omd S is the priority of the request at slice i and r, is the salie as before. [or

S - 4. the number of'states I*Or symmeintrical access paths is 129) iind the number of Suucs for isym-

metrical access paiths is 214. Similar increases fiar S 6 wouild put the number of sLates above

lO.(K)0. which we consider to he too m1anly stites.

We could have nurstv.,f lmIrfs 2 mid1( 3 for lirger Jiuc,; of S %ia 'ilition. Inl Kact. we dlid .,

do this f'or S 8: the rciilis arc epoitcd a~ (h.iptr 4. Ilhoc~cr. the simiimatiomrs reported inl

% % .%
% % % 

11
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Chapter 4 are for the entire Concert model, not just the Ringhus as is our focus here. For cxam-

pIC, die siimulations reported in C'hapter 4 assumc grant durations of nine rounds and arbitration

times of two rounds: we assume single round grant durations and insuinwneous arbitration here.

Pat I canlot be carried oLI via simulation since optimi/alion is impractical via simulation.

3.8.1 'Iie ,ffect of Asymmetrical Access Paths

One factor complicating the comparison of the optimum throughput with asymmetrical

access paths with the optimum throughput with symmetrical access paths is that users may adapt

their programs to suit the topology. As a result, requesLs may be biased in thivour of the clockwise

direction in the Irner case and unbiased in direction in the latter case. To avoid biasing the com-

parison. we present the results for various asymmetrically weighted and symmetrically weighted

request probabilities for both asymmetrical and symmetrical acces paths.

Figures 3.26, 3.27, and 3.28 show the optimum throughput with asymmetrical and symmetri-

cal access paths fr)r p -I - ,ip P- =.5S 1, and p -:0 respectively. (p-. is the probability of a

request of one hop in the counterclockwise direction.) Note that the optimum throughput with

asymmetrical and symmetrical access paths is identical for p -! =0: hence only one set of PoinLs is

shown in Figure 3.28. As expected, the difference in the optimum throtughputs for asymmetrical

and symmetrical acce;s% paths increases as p _ decreases.

3.8.2 '11e Effect or the Rotating 'riority Arbitration Algorithm

Figure 3.29 shows the optimum throughptut of the Syinmntric IRingbus and the throughput of

the Symmetric Ringbus with the rotating priority arbitration algorithm used in the Concert

Ringbus. For very light traffic, the throughput with rotating priority is close to the optimum. For

all other traffic, the throughput with rotating priority quickly deteriorates with respect to the

optimum. 'lMe maximum throughput, at p I =.5, with rotating priority is .42 less than the optimum

throughput. For P2=1 the deterioration is especially severe. Fven though two requests can be

granted without conflicting, the roraling priority algorithm only grants one request. The reason for

this stupidity is that slices are assigned consecutively decreasing priorities in the clockwise direction

from the highest priority slice. Since no requtest can be granted which may conflict with one at a

higher priority, a long request currently blocked by a request granted by a higher priority slice can

nevertheless prevent an otherwise grantable request from being granted due to a conflict with the

higher priority long request. An example of such a situation is shown in Figure 3.30.

I j :-~.--

.', ',' ,'- '-. ,' " ° .,, -. ' ,' v ,' .'- ..- .' .. -. ' .' --. - ,-. . -. ..- , -.- -.. .-. . . . . . . . . ... . .. .... . "".
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Figure 3.26: A comparison of optimum throughputs for

1.7 four slices and one round grant durations with p-,=pl
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0 :2.00

12,0 Figure 3.27: A comparison of optimum throughputs for
•~ 2.00, four slic s and on round ran durations w ith p _ -= .
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1A2.00 Figure 3.28: A comparison of optimum throughputs for
1.0 four slices and one round grant durations with p -1=0
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1.0 120041.00

\ Figure 329: Throughout with rotating priority algorithm and optimum

.. throughput, both with symmetrical access paths, for four slices and

1.00 one round grant duration with p -I =p
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11 3

3 ~P. is the priority
or thce requvct at %ficce

P 3

Figure 3.30: Fxamplc of a disadvantage of tie rotating priority algorithm

Slie I's request, which may he granted because it has the highest p~riority, conflicts with the lower

priority slice 2*s request. hence slice 2's request cannot be gratecd. I lOWCVCr. slice 2Ts request con-

flicts with the lower priority slie Ys rcquest and thus slice 3's rcquicst cannot be granted either.

even though it is otherwise grantablc. Ani obvious. fix t) die problem is to stagger thc slice priori-

ties as shown in Iigurc 3.31.

11, 3

11 0 S P, I~

Vigure 3.31: Staggered request probabilities

Thie consecutive assignment of slice priorities ar-Ound the Ringbus will also obviously lead to

throulghput degradation fo~r a largerimnmer of slices, such as S - 8. and for cases ill which cloc~k-

wise requests of greater than one hiop predominate. 'Ilie priorities call be staggeied inl a imanncr

similar to that in Figure 3.31 to reduce this degradation. Interestingly, it is easy to modify the Con-

cert Ringhus to effect such a change to the issignmcml of the slice priorities. A new arbiter priority

ROM (at 2K' X8 ROM) is all that is required. *%

A difl'cnt hut still simple, impro~cinent to the throughput Of 11he Symmicric Ringhus with %p
the rotating priority algorithmn is to change the direction of' the rotation. When the priorities tire

updated in the Co~ncert R ingbus ihcr die highei: priority is assigneid to the next slice with a

pending r-cqticst inl the countercloc kwise direction fromi the ctirnt hiighest priorit) slice. Clock wise

% %&V .. aEd W h ' ~p- * -~ P ' ~ -. ~-
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rotation of the priority yields better throughput (assuming the slices are assigned consecutively

decreasing priorities in tie clockwise direction from tie highest priority slice). The maximum

improvement in throughput by reversing the priority rotation from counterclockwise to clockwise

is .10. which is attained at p 1-.5. As bctirre, a new arbiter priority ROM is all that is required to

implement clockwise priority rotation. %

3.8.3 The Effect of Asymmetrical Access Paths and the Rotating Priority Arbitration Algorithm

Figures 3.32, 3.33, and 3.34 show the throughput with asymmetrical access paths and the

rotating priority algorithm, the optimum throughput with asymmetrical access paths, and the

optimum throughput with symmetrical access paths for p. I--p 1. p- i =.Sp 1. and p - I- 0 respec-

tively. As in Figure 3.29, the rotating priority algorithm imposes a degradation in throughliptt (as

compared with die optimum throughput with asymmetrical access paths) that increases as p I or

P2 or both increase. lor p I=p -1 -.5, the degradation is .30 or 16%. Again, the degradation is

especially severe for p2--: 1.0.

The throughput degradation is mostly attributable to the rotating priority algorithm if P2 is

large and is mostly attributable to the asymmetrical access paths if p I and p _ i are both large and

if the request probabilities are the s.me with symmetrical and -symmctrical access paths. (lhi

comparison can be misleading since die request probabilities would probably have a strong clock-

wise bias in direction in any Ringbas with asymmetrical acccs,, pths and would piobably he rela-

ti'ely unbiased in any Ringbus with symmetrical access paths. See the parigraph at the beginning

of section 3.8.1.) 'The throughput degradation attributAhle tO the asymtmetrical access paths dimin-

ishes as p - i--0 if the request probabilities are the same with symmetrical and asymmetrical access

paths. ('The same parenthetical note applies to this statement too.)

We expect all the trends observable in Figures 3.32, 3.33, and 3.34 to be accentuated with

larger values of S.

%

.
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Figure 3.32: A comparison of throughputs for four slices and

one round grant duration with p _lPl
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Figure 3.33: A comparison of throughputs for four slices and

one round grant duration with p _l=.SpI
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1.0 ZO Figure 3.34: A comparison of throughputs for four slices and
one round grant duration with p.-1=O
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3.9 '1h Ringbus in Ihe Concert Environment

So far in this chapter we have considercd the Ringbus model in isolation. Now we consider

some of the differcnces between this arificial environment and the Concert environment. We dis-

cuss the cffecs that these diffcrences have on the operation and pernornance of the Ringbus. In

section 3.9.1 we discuss die details of the Muhibus-inghus connection and develop the hooks for

the integration of the Ringbus model with the Multibus models in Chapter 4.

'Il1C major differences between the artificial environment of the isolated Ringbus and the

Concert environment are:

1) the duration of the grants,

2) the arbitration time,

3) the dead time between successive Ringhus requests, and

4) global register accesses. -

The duration of a grant is the total duration for which Ringlus segments arc allocated to a

request. As reported in section 3.3.2 of Appendix A. this duration is 9 or 10 arbiter clock cycles -

i.e. 9 or 10 rounds - for reads and write accesses when the arbiter clock period is 200nscc. Other

than for a geometrically (istribltIed grant duration with a mean of 10 rouinds. we did not investi-

gate the isol,.ed Ringbus model for sich Io0tg grant durations. Furthermore, this case with a

mean grant duration of 1t) rounds applied tor S =4 and symmetric access paths. Thus grant duira-

tins in the Concert environment are much longer than we considered for the isolated Ringbus

imoiel Cxc'itL in one special case.

As discussed in section 3.4, we expect that the eclect of' the lmg grant (urations on the

optimum performance of the Ringbus can be estimated fairly well from the optimum throughput

with a deterministic grant duration of one round and equation 3.18. It should be possible to esti-

mate the efli~ct of long giant durations on the throughput for arbitration algorithms other than the

optimum. by similar means. We expect then that the pertoirmance of the Ringbus is initially quite

sensitive to die duration of grants and d.creases rapidly as the duration of grants increases.

'[lie arbitration timc (or ,nore precisely, the arbitrafion delay) can be divided into two com-

ponents. At some point during the arbitration time the arbiter decides (or can be regarded as

deciding) whethcr or not to grant a request. The rest of die tinle is a delay gathering request

information before the decision and a delay comuninicating and implementing the decision. Thus ,

the arbitration time may be trc.,cd by aSSulling inStalltallCOuS arbitration tinc and adding the ,.

appropriate grant implementation delay to the request intcrarriv,l time and the appropriate grant A A

iml)lcmfetitation delay to the irim;it dration. Incre;asing the rqcmest intcrarri al tine (i.e. increasing

P0) and increasing the g lnt d ration (1(tcresc,, the throughlpt. The exact el'ect of adding these

delays depends on the magnitudes of the delays and the parameter \alucs for the requests and

% %.

am ~ . * a '. '. . . , . V'.
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grant durations. Ihe arbitration delay in Concert is two rounds - one round of request gathering

delay and one routid of grant implementation delay. For light to medium loading the resultant

additional clock cyc!e of request interariival time will cause little change in Po and hence will have

little clect on performance. l.ikewisc, the effect of the additional cluck cycle of grant duration will

be small since grant durations are already quite long in Concert.

'Ihe dead time between successive Rmgbus requests is the minimum time between the end

of a Ringbus grant and the next nonnull request generated from the same slice. In our isolated

Ringbus model we assumed a dead time of zero. I lowever. in Concert there is a dead time of 2 or

3 iounds. (The dead time corresponds to the minimum value of I RH w which is reported in scc-

tion 3.3.2 of Appcndix A. We define I'l "" q and discus the details of the Multibus-Ringbts

interaction in section 3.9.1.) Since the dead time is relatively small compared to the total duration

of a grant, we do not expect the dead time to have a Iarge direct effect on the perfonnance of the

Ringbus as compared to that predicted by our isolated Ringbus models. Of course, there will be N,0 % %

an indirect efflct since the dead time portion of Ihe processing time is not well approximated by

the geometric distribution which we assume for the processing time in our isolated Ringbus %

models. "lle consequence of the dead time is that the mean processing time must be at least 2 or '

2 .
3 rcunds, and thus p0>

o  . This correspond:; to light traffic in our isolated Riigbus models.

We have already discussed global register accesses. Accesses to global registers on a slice dif-

l.rcnt from the slice originating the access can he treated as special global memory requests.

Acccsses to global registers on the same slice originating the access cannot be treated in this

manner. Instead, we simply ignore such accesses. We expect global register accesses to be infre- '

quent in normal operation, so the effect of ignoring such accesses in our isolated Ringbus models .

to be minimal in most cases.

Note that there is additional information available in the Concert environment which could

conceivably allow the Ringbus arhiter to achieve better pcrformance. In Concert, the only infor-

mation available to the Ringbos arbiter is the type of request or grant present at each slice. 'Tie

arbitcr is able to infcr from this information the duration that the request has been pending or

that the grant has been in progress at each slice. Other information available in the Concert

environment, but not availablc to the arbiter, is the number and type (i.e. MUltibus or Ringbus) of

requests in each Multibus queue and the waiting time so far of each request.

Since all other Multibus activity is blocked during the entire duration of a Ringbus access -

even during the period which the access waits for use of the Ringhus - the arbiter could concciv-

ably give priority to Ringbus accesses blocking a large number of Multibus accesses and thereby

improve the overall throughput of Concert.

Finally, note that although the arbiter clock period does affect the pcrlorniimncc of ihe

0 W.ras * .S,,.. . .,". P J. t " .
% %%* % %%
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Ringbus, the effict is not as large ats one may expect. 'Ilhc reason is that at considerable fraction of

thc duration of it Ringhus grant is approximately constant independent or thc arbiter clock period.

3.9.1 TIhe E'quisalenit Nlodel of the Riiighus A*
As discussed in section 1.3.5. the Ringbus can be replaced by an equiivalent model for each

slice-RinghuIS connection. T'he equivalent model for each slice- Ringbus connection is thc Ringhus

access time distribution ats seen by that slice. In determinuing these equivalent models of the

Ringbus, we assume that each slice has been replaced by its single processor cquivalent with sonic

processing time distribution, with mean 1 and sonlic igu destinationprbilte

AIl, i' (S/ 2 -- 1),...- 1. 1. 2. . or S1 2. (S is the number of slices.) We assume

that all of the single processor equivalent models arc identical and that the Ringbuls is symmietric

with respect to each slice. Under these latter two assumiptions. die equivalent models of the

Ringbus are identical for each slice-Ringhus connection and thus the Ringbus is completely

characterized by omie equivalentt model. As noted in section 1.3.5, this means that only one

Multibus-Ringbus connection neced be considered during integration.

TIhe single processor equivalenit of the Multihus and the RingbuIS each perceive aI HingbuIS

a1cc&ss cyLC in a diffc-rent way. Fromn the point of view of the single processor equivalent, at
Rimbgus access cycle consists of a processing time, denoted by i Af Rqv,. and an access time, denoted

by IaRfl. IuRII includes the waiting time, if any, of the Ringbus request generated by) the access.
[he probability distrihution of incorporates the Multibus waiting time. Figure 3.35 depicts%

the point of view of thle single processor cquivalent.

Ringhtis *

signal . -t
(active iow) **ti

Figure 3.35: Point of view of single processor equivalent

From the point of view of the RingbUs. a Ringbus access cycle consists of' a processing time,

a waiting time, and a grant duration, all defined relative to the arbiter clock. We define the grit%

duration as the total dUration for which Ringbus segments are allocated to the RinlgbLs reCquest

generated by thle access: we denote the grant duration by d. We define the processing time as the

interval between the term ination of at grant and the commencement of the fbollow i g granlt in tile

absenice of conten ion in the Ri ngbuis. We denote ti is in terx .l by ,/RI?("" to in J icaite thle plocesi ng

time as seen by the R inphus. Fi naik . we define thle ' aiitinlg timeI to bc: thle diffii ionl that a g-int is

% %,F.r " ' %
% %
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delayed due to Ringbus contention; we denote it by wRIl. We measure RNivtj - W~fl and d sn

chronous to thc rising edge% of dhe arbiter clock. FigUrc .3.36 depicts the point of view of the

R ingbus.

Arbiter
clock

&gnalt

_______
I 'Vll

Figure 31.36: Point of view ofiRingbus

We now combine the points of view of the Single processor equivalent of the Muhtihus and

the point of view of the Ringhus. Central to this combination arc the faicts that 1) the Muiltihus

operates asyncehroniously with respct to thc Ringbus arbiter and 2) the arbitration for die Ringbuis

tLikes somen nonzero time. Wc define ihttI s thc time required1 to .synchronize a Multibus rcqucst

for a lRiighuts access with the arbiter clock. More precisely. fltc is thec interval between the arrival

of it request at the Ringbus al biter and the ncxt rising edge of' dhe ibiter clock:1 We dclinc ,,,b

as Lte arbitriation delay of the Ringhus arbiter. (1,,b is some inltegral lt~~iple Or the arbiter clock

period.) In addition, we define i;, s the interval between the initiation of a R inghiis aKccs- on%

thle Multibuis and the arriv ; of the corresponding Ringhuis reques at the Ringhtus arbiter. ,it-

reflects die time that a processor ikes to put valid signals On the Multibus once it has sci/ed con-

trol of the Multibus and the time that the RIB takes to decode these signals. (We consider an

access on the Multibus to initiate when a processor seiies control of' the MltibulS and to terminate

when the processor releases control of the Multihuis. See section 2 of Appendix A for details.)

lhrough variouls quirks in the timing of' M ultihus and R inghuis signals, the terintation Cot an access

and the disassertion of the Ringh.is request at the R ingbus arbiter Cmccur at approximately the

s,-lie time. (See section 3.3.2 of' Appendix A.) We a'ssCim this to he thc case heic and dtus we doN

not introdiice a corresponding

[he combined points of %icw of the single processor equivalent and the R inghus are pictured

in [igure 3.37 along with the quaintities just defined.

f I hc-.c sil ciare driawn a% activ ire- t Im a lic tihe NiomIN in tire ;wcia I (onceci ,\sit'in
* in thict CIion we ipcirc dcla\N hail \ oi:id ,incillI',I N' lit 'dcccd lon cciltte 1cciasiahilit prot'cm and a%-
surne thait tce ac bitcr ipoi are soiic; ocl cc cr\ ri~icc cdi-c of the -ihitcr clock
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ALFbr_.LFLV LflilLFLYLJ

Ringbus
ae, "

Rilbus -,._ .IN .,

Figure 3.37: Combined points of view of single processor equivalent and Ringbus

Note that die access time of the single processor equivalent and the duration for which seg-

mients are allocated in die Ringhus - i.e. die grant duration - arc out of phase. Of COlirse, the

actual period for which the data transfer occurs is tile same for tile single proccssor Cquivalent and

the kingbus. We denote this time by h. The arbitration delay skews tie total time allocated to %

the access in the respective worlds of the single processor equivalent and the Ringbus.
'laking mcans, we hav , ifCq-R aRf , i -- and thus

-Rih'v -1/m n -- - Iiqv 'lV wh nJi'i )sLl"m .;r lg t' i.cs

'p - 'P 4 -uiR I, WR~t - -- 'p IR -- C, wheRe,1 iS Lhe Mean Itmghu, access

time when there is no contention on the Ringbus i.e. when wR/? -0. Note that ,
-41to 'n ) . . . . "- %

,RB B- 'A-tlrtI + 'lktcl -I- larb -t Itrans'

The inputs to the equivalent model of the Ringbus are the probability distribution of IiP lieqv

and the Ringbus destination probabilities Aillr lv. The output is the probability distribution of

The inputs to the actual Ringbus model are the probability distribution of and the ,.

Ringbus destination probabilities. p ifneqv '[he output of the actual Ringbus model is the

A~~~~~ ~ ~ ~ ~ f 11%-01P rvi fl(s

IAfR,',lv . ) - prcv ifi '.l1111 > Ipr cv Pr,vR ]|i Ip r ~R "I /p I t,trt t" - o ns
R Roov%."#

t More prcc.sly. we have I
WI2-- ilarb  f-A11( Ip I-ta rt t  .- rtn "

where C is the arbiter clock period anid the supciscript prey denotes tlie quanfibics fron the preious Ringbus

l ffleqv,4  Istrr --

acces. p strI <, dhen #reY. h a new Ringbus rcquest arncs ;1t the Ringbus arbiter belor --

the grant of the previous request has beein dis;i,,,ertecd Ibis preous giant must be dilsasciwed before the new

request can 1% accepted by the arbiter, hence the new grant follows the old by the arbitition tine and one cn-

lire arbiter clock cycle for lichine .arb / C is the (1c,.d I:xii milmoned earlier.

,.1

%.*.'11
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throughput, or alternatively, wR/. The Iwo are related by

.__ S - g_

iiRI 1  -/ Id

where g is the average number of new or continuing grants per clock period (i.e. round). Now to

say anything more about the relation between 1R tojv pM nc 'v and w// we nced to consider ai

specific Ringbus model. We, of course, assume the Ringbus modcl discussed in this chapter.

Specifically, we do the following:

I) We approximate die probability distribution of l. B'tp by a discrete geometric distribution

with the same mean. 'I hus po in our Ringbus nodel can be computed from the relation

PO _
..... - - - where c is the arbiter clock period.Il--po c %-.?

2) We set p pt I. I .. r S/2 for the other Ringbus

request probabilities.

3) We set the grant duration equal to d. We could just as easily allow geometric or arbitrary

discrete probability distributions for the grant distribution provided that the Ringbus model

allowed such distributions. We assunic a detenninistic grant duration for simplicity and

because obser ed grant durations in Concert are very nearly deterninisic for reads and

writes. (See section 3.3.2 of Appendix A.) %

''he Ringlus model can now he holved tir g and 'RR computed from %

S g
PO d

0, 1

Finally, we can obtain aR I%,
Note that because of our approximation of the distribution of iR' by a discrete geometric

distribution, we only need i-Rl/;,,v, as an input to the Ringbus model. Recall that .: N

RJI'qV M Bf eqv -(normn) - - -an o th-1 1,;R 11 -- Ij i- I .a/rt -flu tch I arb  t" Itrans - d ,. I, is a ll In p u t to tile' "" -

Ringbus model and 'start, tarb , tIrans., and d are constants that can be determined by empirical % -N,

observations. Such observations are reported in Section 3.3 of Appendix A. tktch, however, actu-
AfV kCfv - ._ %

ally depends on Ir and arb. We dneRi as the interval from the comple- A

tion of a Ringbus access (from the point of view of the single processor cquivalent) to the next ris-
ing edge of the arbiter clock. Thus ., i/odo' VI- .rn.

aR11I : -"lar b  -- Itran$ .-. ' %

or l large, Ig is irrelevant and since the Multibus model (and the single proces-

sor cquivN 'lnt model) is ,ts nchronous with rcspect to the arbiter clock, we hive Ilu((h  .5c . 'Ilis

sitati ai is depicted in IFiurc 3.38.

be d. W.-. Is -e61, ,,° . °
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Arbier

signal mdlo- *R1

Grant
signal

aRD p , "

,. ..
(t,= 0and t.,= 0 asun-d)

Figure 3.38: Signals when ip arge wr,

For pM4 small, enco becomes important. The reason for this is that the Multibus ,P-

model (and the single proccssor cquivalent model) may generate a request at any time after the %

completion of a Ringbus access, but the arbiter cannot accept and act on the request until at least

the next rising edge of the arbiter clock after die previous access. (Of course, acceptance of the

request must also wait until after dc previous grant. See section 3.3.2 of Appendix A for details.

hi de figures we assume 1nrb =0 for clarity ol presentation, so th,-- grant terninates at the next

clock edge after the request terminates.) 'l'hi. is, 1, h> I In Ilit, for M a condition

that can occur with many processors on a Multibus all acces. ing the Ringhus, we have
- c andtocrlor'k 0 t,(gon'.

'Iat.h :aRft . Ts .tlu can vary frtin 0 to c (ignoring setup .,;,d hold ines on the arbiter

input devices). Figure 3.39 depicts an example with lul h .z=.9c.

,'.P ",-

ArbiterJL jjjJ jf7W JJ h
,ctwkk .95C

Ringbus AM
request__ _.c-

Grant -r
signal

si na _ __ __ -- A ccemc I - - ~ - J u . A ccess 2

ScgnciLs still granted
to access I .

I-'

lititre 3.39: Signals when --

An approximate relation for h is e.
%

% .- ,
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,,R if a Ringbus access is followed immediately by another Ringbus request

Ilatch =.5c otherwise
.- endoclock .5

'l'hereforc '.w/h .5c(! - PRI?)+ P/ rni,fl .- 5. 4 P nu ( I'ns -larb -. 5c) where PR B is the

probability that a Ringbus access is followed immediately by a Ringbus request. In other words,

PRI, is the probability that the Multibus queue is noncmpty at the termination of the present

access and that the next request in the Multibus queue is for the Ringbus given that the present

access is a Ringbus access. PR),B can be determined from the- Multibus model: it is another output

of the single processor equivalent model of the Multibus.

In summary, we have three inputs to the Ringbus equivalent model from the single processor

equivalent model: 1  AMleqv (for i= -(S /2- 1)... -1, I , or S/2). and PRY. In

addition, we have four other inputs to the Ringbus equivalent model: 'start , arb , trans and d.

Note that only means are required for the inputs (except for p Af1qY and PRB) to the Riiigbus

equivalent model. Formally, the output of the Ringhus equivalent model is the probability distri-

bution of ',tR/. Ihowever, in section 2.9.2 we assumed an exponential probability distribution for- 'hk %,

laRB in the single processor equivalent model, which is completely characterized by aR 'IThus we .

only require 'aRH as an output of the Ringbus equivalent model.

%I. % "

.. .-.-.

,,•".. % ,

-', .%i _

*. o-.

., .5 .. 5,. ' .a ,.- .. .. .. . . " . .. • , . .. , p.- . - . -, -, . ., , - , -. -...... , ,.5 , - . . 5 a.. . . ,,,,- a- ,''a , .o.. ..fl ,,, . - . ' ,-
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3.10 Conclusions

Conclusions 1 to 5 pertain to dic definition of dh Ringblus givcn in section 3.1 and ie vari-

ous assumptions that we made. Thcse assumptions are listed below:

I) even number of slices I
2) no propagation delays or metstability settling delays

3) memorylcss i.e. geometric - probability distribution for nonnull request arrivals

4) symmetric request probabilities

5) no global registers K

6) all slices identical in all respects U.,

7) all probability distributions stationary and all processes in steady-state

8) no bound on request waiting time

9) deterministic or geometrically distributed grant durations of an integral number of arbiter

clock periods

10) instantaneous arbitration time (i.e. no arbitration time)

I1) no start up time, no end time, and no dead time

I. For six or more slices, de optimum perlorinance of the Ringbus is difficult to determine

and analyze - because of dhe large number of states - ever, with all the simplifying assump-

tions.

2. TIhe optimal arbiter algorithm depends strongly on the request probabilities; no one arbiter

algorithm is best. In addition, the optimum performance of the Ringbus depends very . "

strongly on the request probabilities. The maximum throughput for requests of length one .,,

2 7is between 2S and 7S (where S is the number of slices) and the maximum throughput
3 8

for requests of length S/2 is 2. A first order approxination of the dependence of the

optimum throughput on thk request probabilities is given by S where -is the aeragc

request length:

s/.I 2 i p S2 PS/ 2

j= 1 0 --- %-

(Note that is part of the tipper hound on g"pt developed in section 3.5.1.1.)

e° f % %

,.Ep..- -. -, 9.,-



228 Ringbus Model

3. For fiur slices the optimal arbiter algorithm always grants the maxiunm number of

requests possible in every state, independent of die requcst probabilities. For Fix or more

slices, the optimal arbiter algorithm does not always grant the maximum number of requests

possible in every sutite. llowcvcr, for six slices the optimal throughput i; not degraded signi-

ficantly for light to medium loading by restricting the algorithm to grant the maximum

number of requests in every state. For heavy loading with mainly very short and very long

requests, the optimal throughput is significantly degraded with this maximum request res-

triction. We expect that this degradation increases with the number of slices.

For six slices, tie optimal arbiter algorithm does not always grant the request set utilizing

the maximum number of segments possible in every state either, although the maximum

niumber of segments decision seemed favoured in those states il which the maxinum

number of requests decision was not favoured. For all request probabilities, the optimal

throughput subject to the maximum number of segments in every state is always greater

than or equal to the optimal throughput subject to the maximum number of requests res-

triction in every sUtte. We expect that this result also holds for more than six slices.

A reasonable sub-optimal arbiter algorithm for six slices is the following:

In each stite select a request subset to grant by choosing arbitrarily from all the

request subsets in a state that:

1. utilize the maximum number of segments
6

2. have the maximum number of rcquests subject to I. and

3. have the maximum number of longest requests subject to I and 2.

We expect that this algorithm is also a reasonable sub-optimal arbiter algorithm for more .-

than six slices.

4. For deterninistic grant durations of d> I rounds, the optimal arbiter algorithm tends to

grant requests immediately for very light loading (p0= ) and tends to delay and align

requests so that they can be granted at intervals of d rounds for very heavy loading (jYri=0).

In fact, for Po A0 the optimal arbiter algorithm is the optimal interval algorithm - i.e. the %

optimal algorithm subject to the restriction that requests can only be granted at intervals of

d rounds. The optimal interval algorithm is the sme as the optimal algorithm for d -- I and

the equivalent request probabilities. The optimal algorithm in between the extremes p0=1 %

and pow-O is a complex function of the request probabilities ,nd grant duration d. I r four

slices, the optirnum throughput can be estimated fairly closely by the exponential approxi-

mation of equation 3.19. which depen!ds only oil tlhc optimum throughiput l'r d I. We

expect that eqtation 3.19 also yields a reasoinble ,pPIoxillidli ol to the optinn..

%7N::i

'- ~~~~~-S~~ . . . . . . .. . . . . . . .
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throughput for more than four slices.

5. The performance of the Concert Ringbus can be improved by making the access paths sym-

metrical and by modifying the arbiter algorithm. Results for four slices suggest that when IV

counterclockwise rcqucsts predominate, the greatest improvement in performance is

achieved by making the access paths symmetrical, and wher, long requests predominate, the

greatest improvement in performance is achieved by modifying the arbiter algorithm.

The performance advantage of symmetrical access paths over asymmetrical access paths is

difficult to quantity since users may adapt their behaviour to suit the topology, and thus the

request probabilities may change with the topology.

Symmetrical access paths require three additional set of drivers per slice (see Figure 3.1)l' ,N.

and a more complex arbiter since arbitration must also be pcrtormed for request destina-

tiOns (unlike with asymmetrical access paths). As discussed in section 3.1, the Concert

Ringbus arbiter is easily modified to perfor'm this arbitration for destinations but the

number of parts required doubles.

It must be cautioned that modifying the arbiter algorithm may not improve the perfor-

mance to the degree suggested by the results in this chapter since we have ignored two

impoi tant issues. TIhese are I) the realizability of the optimunm arbiter algorithm in a reason-

able amount of hardware and 2) the arbitration time rcquired by a realization. "The arbitra-

tion time obviously degrades performaoce and if sufliciently large, it may negate any possi-

blc gain in performance. We have also ignored the practical rcquirencnt for a bounded

request waiting time. However, provided that the maxinum permissible waiting time may

be sufficicntly large, the degradation that this requirement imposes is minimal.

The performance of the Concert Ringbus arbiter can be improved by either of two trivial -

changes (or possibly both) to the arbiter priority ROM. Results for four slices indicate

these changes yield only minor improvements in performance. IHowevcr, the tmagnitude of

these improvements should increase with the number of slices.

6. Since a crossbar interconnection has the best performance achievable (where the intercon- "."

nection must be circuit-switched with .S1 sources end S destinations) and is popular and well

known, it is interesting to compare the Ringhus and a crossbar interconnection. We make -V.
such a comparison on the next page, dividing the comparison into the following three areas:

pcrformance, hardware costs, and arbitration costs.

t One set of" drisers is required for each unidirectional switch and two sets arc required fo, cnch hidirectional"
switch.

" P -( "P
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Perforance

The optimal throughput oft he Ringbuis is close to that for it crossbar when either thc load-

ing is light ort short requests predomninate (or both). Othcrwisc, the optimal throughput of

the Ringbus is significantly less than that of a crossbar. This degradation in throughput rcla-

ive to that of a crossbar is especially severe in hcavy loading when long requests predom-

inate.

Hlardware Costs

To connect S sources to S destinations, the crossbar interconnection requires S drivers

whereas the Symmetric Ringhus requires 6S drivers and the Concert Ringbus requires 3S

drivers. 'Ilie Ringbus also requires more hardware for arbitration than at crossbar does, but 5

the ditl'hrencc is difficult to quantify.

Arbitratiou Costs

Arbitration for the Ringbus must be centralized whereas arbitration for a crossbar may be

distributed amongst the destinations. Consequently, an arbiter for the Ringbus - especially

an optimal arbiter - can be much more complex than an arbiter f'or a crossbar.

Any final conclusion in comparing the Ringbus and crossbar interconnections (or any other

interconnection) decpends on the number Of slices, the expected operating point (i.e. the

request probabilities), and the relative importance of perFormance Verus1; Cost. Certainly, theN.

Ringbus seems well suited for predominantly short reqluests and unattractive for predom-

iniantly long requests.

7. Thie scalability of the Ringbus past eight or so slices is doubtful because Of the complexities s
of the centralized arbitration and control.

I~~~~~. N NI o 1 J

% W %
.0~'I *lo %-
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3.11 Suggestions for Future Work

The following suggestions are listed in order of' perceived importance.

1. Explore the perfinnance, hardware cost/arbitration time, and maximum waiting time

tradcoffs of various algorithms and implementations in an attcmpt to identify an ideal arbitration

algorithm and implementation. At least investigate various implementations for optimal or near-

optimal arbitration algorithms (such as the algorithm mentioned in conclusion 3 of section 3.10).

2. Remove as many of the eleven assumptions listed in section 3.10 as possible. The most

important assumption to remove is that of zero dead time. In the Concert Ringbus arbiter, as in

any other arbiter implementation1, there must be at lcast one round between successive nonnull

requests in order to identify new requests. Other factors, such as the minimum processing time of

processors and the Ringbus arbitration time (since a new request cannot be granted until after the

grant from the previous request, delayed by the arbitration time. terminates) contribute to a

nonzero dead time in practice. We feel that a nonzero dead time is an important addition to make

to improve the accuracy of our Ringbus model, especially in heavy loading.

Removal of assumptions 3 and 9 to consider arbitrary nonnull request interarrival time and

grant duration probability distributions, would be ideal. Such a generalization of our Ringbus

madel would not only lead to more accurate modeling of request arrivals and grant durations, but

also allow the removal of other assumptions. As discussed in sectioi 3.9, a nonzero arbitration time

can be treated by assuming ;nstantaneou:; arbitration and suitably apportioning the arbitration time

between request interarrival time and grant duration. Any start L) time, end time, or propagation

delays can be treated by a similar apportioning between request initetarrival time and grant dura-

tion. Unfortunately, arbitrary request interarrival and grant duration probability distributions

would seem to make the Ringbus unreasonably difficult to analyze. Hlence any practical generali-

zation in this direction is likely to be just an extension of our treatment by special cases.

It would be worthwhile to consider more slices in the Ringbus model but the large number

of states required makes an exact analysis difficult and costly.

Conceptually, thcrc is no difficulty in removing assumptions 1,4,5, and 6 (see list of assump-

tions in section 3.10). floweer, therc is the practical difliculty that the analysis becomes coinpli-

cated. This is especially true for the removal of assumptions 4 and 6 since the symmetry that we:.'-

exploited so heavily and successfully ito case the analysis will not exist. It would probably be best

to have a specific situation in miad before pulrsuing the removal of any of the assumptions 1, 4, 5,
,%

and 6. %

t In making this siatcmceit, wt :,,un'c lhit th., only wtcnin:tion available to the arhilcr from a slice is Whcher
or not a rcqtwt is pi.-,cn ..nd ;f ,.o. tUis ihsl ah un ol tIh request Phis i:. Ic only information a alablc to the
arbiter in Conccil

W o
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3. Investigate the degree to which the performance of the Ringbus may he improved by

making additional infonation - such as the number and type of requests in ech NMulfibus qucuc

and the waiting time so far of each requcst - available to the Ringbus arbiter.

4. Consider other mctrics for the performance of the Ringbus such as minimizing the

maximum waiting time of requests.

5. Fstablish the validity of the conjecture in section 3.4.2.2 that when p0=0 gd>1 = =1

i.e. when p0=0 the optimal average number of grants per.round with deterministic grant dura-

tions of d rounds equals the optimal average number of grants per round with grant durations of

1 round, assuming the nonnull request probabilities are the same in each. case.

, I4

-9Z
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Chapter 4

Integration and Simulation

4.1 Introduction

In this chapter we consider the integration of the Multibus submodel, discussed in Chapter 2,

an( the Ringbus subImodel, discussed in Chapter 3. We describe the results of the integration for

a few example cases and compare these rcsulIs to those obtained via simulalion of the overall

Concerti modcl. In the rest of thc chapter we present mid discuss the results of two ditTcrent seas

of simulations of tle overall Conceit model with cight slices. The PXt'PoSe of the first set is to

assess the performanc, tf the Ringbus with different access paths and arbiter algorithms and to
cumpare this peribrmance with that or other intwrconnection architectures in an environment close

to that in the actual Concert system. Such a comparison would be tot computationally expensive

to perform by solving the associated Markovian decision problems. The purpose of the second set

is to determine the expected performance of the actual Concert system for various parameter S.
,

values. "1lc variables considered in these simulations are the number of processors in a slice, the

mean processing lime, and the requiest destination probabilities.

4.2 Integration ,

Summarizing the results of sections 2.9.2 and 3.9.1 we have:

a) The Single Processor Equivalent Model A,

Input: ',,li (the mean Ringbus access time)

Exogeniots Inputs: N (the number of processors on a Multibus), Ip (the niean processing s.

time), 'r (the mean recovery time), , (the mean Mhtibus access time). 1), (the Ringhus

destination probabilities), P3 (Ohe probability of a long word access), and 4 (di: probability of

a Ringbus access). 4

A' " ,' v ' ' " " '.p "V ,*" -. ' • I=, ",,P, , ." .' ,, A " " %A U• , " " • ." A ,, "
We~A W ?4 ~~$AA..



234 ltegr:liiOil l iimulalion

OAf p glIv Aln", • (the mean processing time ;ilad destination probabilities. respec-

tively, of the single proccsso)r e(Iuivllent model of the MullitUs). I'bu /t (the ctndiional pro-

bihiity that. given a Ringhis acces. thLal access is immediately followed by another Ringbus

aoXCSS)

Computation: pjl " A- for i= -(S/2- 1)., -1, 1, or S/2

/PMHI-qv + ((j f / -/- (4.,/II +) -.

Nq

where

-k

S=0(N 2/-- 1) IA',

I'r - -+ ,

-1 (N-k-i)! A-i

- IN - I

'RH - P

where --- and pNt-
'aM/iN- N'

A 0 (N - k)txA

b) The Ringbus l.quivalcnt Model

-At Ikqv Al/ieq

I n p u t s : , , A q.1 B R.

Exogenous Inputs: S (thc number of slices). I .arr (the mcan start up overhead), ',,,b (the -

mean Ringbus arbitration time), 'runs (the mean Ringhus data transfer time), d (the mean

duration for which Ringbus segments arc allocated to a request and related to 1m,0 by

'l__ I ",54J,

d arb 1c). c (the Ringbus arbiter clock peri.tyeoRigs ccsphsan

the Ringbus arbitration algorithm.

Output: ',R/i
- -_(nn "m) -(norm ) .. .

C'put-Ition: IaR/q 1,R H -I VRB Where 1,,Rf)t -Ista -/ llatch + farb +/ Imins r,

f"ach ---.S t" R Irans 'rb -. ?%

*,'..':

%-.. ,~~ ~~ %r % %.,., r%... , r,..r PLV,,. " V."# " .".%.. p . . " , . .. ." ,." -. ",","."e J ." """""""" ", " . . ". ,".
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W'R/Y is detcrminied from %

_o 9r+ i,
P0 IRfd

S-Po

g, the average number of new or continuing grants per round, is found by solving the

Ringbus model with parameters p, - I -P0 and P0 where -. '

C'PO -MBeqv T(norm)
-- P =Ip ILaRi--

lh1is is ain approximation - sec the footnotc in section 2.9.2. Assuming all tie quantities arce'\

,-.MIiqv , .(r d . if .- 1'qv - d

deterministic, we have 'oa) + •
1--- P0 ',rb + c, otherwise

For a given set of exogenoils inputs in (a) and (b), integration consists or matching the input

in (0) with the output in (b) and martching the otlluts in (a) with the inputs in (b). This can be

done iteratively. as outlined in the following steps. The subscripts k on laR B p . and ['

dcnote successive estimates of the true values of thcse respective quantities. .,

I) k +-0. Assume sonic inital value tm'o IuRR, " denote it by (4,R )0.

2) Using ()kRill, determnine (i " d pII#l"v)k for the single processor model of the

Multibus. %

3) Using ( )k and (p",.")k, determine (1,R1 )k I for the Ringbus equivalent model. ".

4) k " k t- I. If hle estimates of -#Rl, -Mlqv a td ptM lh'qv are satisf'actory, stop. Otherwise go to

step 2.

The iteration cani begin instead by assuming some initial val its for l and ptMI hI(I and

then estimating ljR B . Note that since we employ various approximations in obtaining the

cquivalent models of the Multibus and tie Ringhus (principally approximating tie interaction '
between the two models by first moments), the final estimates f Ir - and - will not neces-

sarily equal their true valiics. We did not investigate the convergence properties of the above itera-

tive procedure. I lowever, we tOund that the estiuiates converged ralpidly whenc%cr we used it.

Therc are two cases for lwhich the ,M1ullibuis and Ringhtis iodels can bhe in Cl,itcd hithout

resorting to iteration:

o-." .".A.
% % , , m ,

'
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Case 1: Very light Ringhus traffic

This ca.s can arise in two ways:

i)- - large, 4+ irrelevant, or
N 

.iq

ii) 4 small (i.e. ,=0), - - -- irrelevant.-

'Ihe irst way corresponds to very light utilizaton of the Multibus, which leads to very

light utilization of the Ringhus regardless of 4,. The second way corresponds to very

minor coupling between the Multibus and Ringbus, which leads to very light utilization -

of the Ringhus regardless of the utilization of the Multibus. Of course, very light

Ringhus traffic can he achieved both ways simultaneously. I lowever. in our treatment V -e

below we choose to consider each way is a distinct subcase.

Case I .(i): large. 4 irrelevant

For sufliciently large, we have t =0, p -=0 (and hence 1,01c..5c).
N -1A l e_.. ' , ._ -

P ~ -+) ) - , = w ,;O an d .7 .
(I *P)N4

' ,,R R ~ .( ar,,) ~ . ,c i -,"u s i M /te q a n d " a n d a ll th e o th e r q u a n t i-~ -,(R 01#71 "start + . 5 "/ /, I, tnov T" " P laR R .

tics of interest can be found without resorting to itcration. %f

Case I(ii): 4, small (i.e. 4,:0) and irrelevant

In this cae tA'f fieq is very large. PRR;-O (and hence wR2.0) . and-- 1.M".•,:

faRl:,,Ri) -Zjarg +.5c f- , +iimns. 1w may he computed by taking

i -=(I )t,,til. Note that it is the possibly large value of 1-, that differentiates this

subcaSC from the previous one.

Case 2: Very heavy Ringhus traffic

This case arises when both ! P- is small and 4 is large (i.e. I). For
N N% %

sufficiently small, the Multibus is saturated (i.e. N>>N* where N' is the saturation %

point of the Mullihus) and hence -t=(N - N*)- , yielding -M ~ laM/ 14 as in

N- ___ -- With 0=,~ %~1/?'VOsction 2.9.2. In additiun p N-1 and thus I'R = - -  , i
--n i i s a W oosn ,

and Ij 1 . hence lAirh =d -arb Ii s . Therefore rIc ipconstant.

% %
%m 

• 'a " V " . . • .L 
•
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.1

Assuming d, tai,'f and . are deterministic random variables

0 a - I- fkatch +
' la,b "- d i.- j, . " turt d - ..

R ,- + c otherwise.

Once P0 and the corresponding g are dctennincd. i/vR is given by

I inally. 101  --I..,r, i Iah I ',rb - Itr,. p - RH f i Itar, 4 d ii-R11. 'lUS i h'  and

I,,RN and all the other quantities of interest can be found without resorting to iteration. -

1 -4 -Af -ci

Note that for small enough - --- and 4 close enough to I, ,M 0 regardless of'
N

the various probability distributions in the Multibus and Ringbus models. In this case

the probability distribution of is given very accurately by 1I . (It in fact .,

becomes exact for 4- as #I
. .... to a N -0 since ii/R -0. 1e) nce our first moment

approximation of the Mullibus to Ringbus interaction is very accurate for
N

small and 41.

We now consider %lme example cases. In each case we detmine t and 4,. for the

Multibus modcl and IWI, and WiRI for the Ringbus model.

All the simulations reported in this section and in this chapter are simulations of the overall

Concert model. As discussed in section 1.3.5, this overall model is comprised of a model for each.e"-,

Multibus and a model for the Ringbus. As a model for each Multibus we choose the Multibus '

model with long word and Ringbus accesses discussed in section 2.9. As a model for the Ringbus,

we choose the basic model discussed in section 3.1. This model dcpends, of course, 0n the particu-

lar arbitration algorithm and access paths desired. In simulating the overall Concert model, we

simulate each Multibus model, the Ringhus model, and the interaction between Multibus models

and the Ringbus model. Since our Multihus models are continuous time models, we sinulate thcm

in continuous time and since our Ringbus imodels are discrete time models, we simulate them in

discrete time. We simulhtc the Multibus nmodels as operating asynchronously with respect to the %

Ringbus model: thus ou1r simulations inclUde the effect of synchroniting the Multibus signals with

the R ingbus arbiter clock. 'I he paraineters (f our simulations are as follows:

% ,%%%
NA

N . ,,

j eff, .e,., e.. ,, ., . '. ,. , ._ e . .- " ", ..,e " .' ,..', ", ".. ".'.-". ., . "- .. ,-,,-,. .. :-..- • . , .' ,, , '.,, . •...." ."
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Multibus model:

- the number of processors on a Multibus, N.

- the proxcssing time disiribution, with mean I.

- the recovery time distribution, with mean I.

- the Muhibus access time distribution, with mean 'aMY.
-the probability of a long word access, -.

- the probability of a Ringbus access, 4.. '.1

- the Ringbus destination probabilities, pR.
-

Ringbus model:
- the number of slices, s.

- the arbiter algorithm.

- the Ringbus access paths.

- the arbiter clock period, c.

-the start Lip overhead, Istart (Taken as a constant.)

- the Ringbus arbitration time. i,rb . (Taken ais a constant and an integral multiple of c.) Ad"

- the probability distribttiu, of the Ringhus data trinsfer time, with mean ',Ir.1S (Note that S.,

the duration, d uir which scgments are allocated to a Ringbus rcquest is related to , by

d - tarb  -+ .. . ") 
, %'

c

Other:

- the block size, fl. Ikach simulation was run Until processor I on Multibus I (this numbering ,.

is arbitrary) completed 30 /- I processor cycles (i.e. processing time, waiting, access time for word

or long word). To remove the effect of transients, statistic gathering did not begin until processor 1

on Multibus I completed 30 accesses.

- the number of block repetitions. R. The statistics reported are based on R repetitions of

each simulation.

. ,

5%

.. ........ ........... . . ... % %
" '" " ' q"= ,." " " L' '" , , . * 'r " "1. , ~", .. . ., , . -. -, = -, . -. . . . . . ' .P -, -. -. .. .-. r ' ' ' " " , "
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We remind die reader or our basic assumptions, which apply to our simulations as well:

* We assurinc that all the random variahles , I. . IMH. and I and dll the prohahilities ,,

4' and p Rfi arc umutuially independent and stationary. '
'1

• We assume each Multibus model has the exactly de %ame paramneters, so all Multibus

models arc identical in every respect.

* We assumc that the Ringhtis inodel is completely symmetric with respect to each Multibus

interconnection.

In all our simulations we assume in addition that:

I1) the processing time is exponentially distributed,

2) the recovery time is deterministic, and

3) the Multihus acccss timc is detenninistic. "V%1

We caution that the following examples were chosen for purpose;, of illustration. They Co P..

not represent die actual Concert system and they do not represent an in-depth study or analysis of

integration. In each case we assume that the Ringhus arhiter has zero arbitration time (i.e.

i rt. -0) and that there are no Iong word accesses (i.e. 1 r-0, and hctice we take 1r --0 and y -- 0j.

In addition, we Utke 4,,,,., =0 and 4,An - 1.0c.

Examuple 1: ip = 1.Oc. S 4, deterministic grant duration (fone roLnd i.e. v zv c. optimal arbiter

for dctcrnministic grant duration of one round, symmetrical access paths. p -I p f-1 .4, and

P2

Table 4.1 presents the integration and simulation results for various values of N, 4. and
'fr ,. " (which is a deterministic value here).

% %.

. :,0:4%L .* - - ! I - - Ail4 %
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N 4--Iir"rn/C 1 " /c I ,,,,./C 'u,R H/C WR H/cf 3.5. .0 (1.0gr .0 0.50 0.64 0.13 10.
Simulation .95±.20 0.0 0.54±.0l 0.68 f 0.13±.03 1.10±.06

1 0.5 0.98 ftgration 3.00 0.0 0.50 1.55 0.07 0.8.
ifulation3.00±.16 0.0 ).53±.02 1.60 0.09±.02 0.87±.03

1 1.0 0.01 Integration 1.00 0.0 0.50 0.87 0.36 2.14 1
Simulation 1.00±.06 0.0 .58±.0l 0.94 0.35±.01 2.05±.07

1.0 0.98 ation 1.00 0.0 0.50 1.74 0.26 1.46
Simulation 1.00±.03 0.0 .58±02 1.73 0.17±.02 1.47±12

2 0.5 0.01 Integration 1.53 0.42 0.62 0.78 0.16 1.73
Simulation 1.40±.09 0.40±.02 0.77±.01 1.02 0.24-±.02 1.64±.06

2ntcgration 1.44 0.69 0.37 1.50 0.15 1.36
Simulation 1.34±.03 0.54±.02 3.29±.01 1.46 0.19±.03 1.43±.03

2I. .1 ntegration 0.22 0.73 0.78 1.30 0.51 2.64
Simulation 0.17±.01 0.70±.0l ).88±.01 1.38 0.49±.01 2.58±.04

Integration 0.19 0.99 0.21 1.60 0.42 2.23
2 i.0 0.98 Simulationn.13±.01 0.84±.04 ).18±.l)1 1.59 0.43±.02 2.32±.02 4%A

4 0. 0.9 Integration 1.02 2.76 0.27 1.48 0.23 1 .60
Simulation 1.00±.05 2.41±.05 )03±.01 1.28 0.27±.03 1.75±.03

F*lntegration 0.01 3.55 0.03 j 1.51 0.50 2.64
4 1.0 0.98 SimuIailion .00±.001 3.51±.07 .02±.4 1.50 0.50±.02 2.66±.03

Integration 1.00 5.17 0.26 1.47 0.23 1.62

0.5 0.98 Simulation l.00±.04 4.67±.)M .27 0.27±.)1 1.76±.03

6 1.0 0.98 Intcgr:ttion - 0.0 6.58 . 0.02 1.52 0.52 2.64
Simulation .O0 I 6.54±.06 .02±.00I 1.5 0.51±.01 2.64±.02

Table 4.1: -1 = .Oc, S --4, deterministic grant duration or one round i.e. d-c, optimal arbiter for
RI? RH PR

deterministic grant duration of one round, symmetrical access paths, _ =p 1-=.4, and p -. 2.

In general, the integration and simulation results agree ra(her closely. The resulLs are closest

for light Ringbus loading (N = 1. 4,--.5) and very heavy Ringbus loading (N =4 and 6, 1.0).

This is to be expected since . .

) the analytical formulae describing the Multibus model are the most accurate for general

t laRH was not one of the statistics gathered by the simulations. In each row corresponding to a simulation in %. ,,

this tablc and in the other tables, l0 I was computed fron the relation '

iaRMi 4 .rt I -ac,,/, + ' R , -,,,. whe .r .,,,, 0.

% %,% % % %,..

'-p. %r

L',/ ".,# V' " ," .% .'o,," .. .,- .- --- ".--'-'- ", ".' %'',,%" " ,' ",'-.-".",v'.' -- "¢':.-".".- .. .- ".' .- '..' .' .".-'.. .. " " ' '.,'..-'. .'..5*,.



Integration and Simulation 241

probability distributions for N «N * and N> N* where N* is thc Multihus satuiration

point. and

2) the first mfomentli approximation of' the Nlultibus-Ringhus interaction is fiirly aICurIte l10r lightV
Ringbius loading (and N -1) and heavy Ringbius loading (and N>>N*). In the first case,%

sine Rlingbus traffic is light, iWRlY = and 11azch =.SC. 'I'huS 'aIRM :'.gar +.5c* 1 trb + Itrans'

Since N =1, tic Multibus queue (in thc MultibuIS model) is quasi-rcvcrsiblc rcgard!css of the

Multibus and Ringbus access time distributions and thus thc analytical formulae of' tic Miii-

tibus are exact with only thc mean Ringhius accss time, 1,iRBIi In (he second case, both the

Multihus and Ringhius arc saturated. In saturation only thc means of the various quantities

arc rc~luircd to determine 1w, %-'RB. and 1aRHM'

Note that light Riulgl)Ls loading and very heavy Ringbius loading are two cases - as discussed ear-

hecr - for which integration can be performed without iteration.

Thle results for various values of (for N = I and 2) are presented in TFable 4.1 to deter-

mine the effect of iln on the accuracy of the integration results. InI Al of the Riugibi:; Models

that we investigated in detail in Chapter 3 (i.c. the models in section 3.3. 3.4. 3.5, and 3.8) - inclid-

ing tie optinial arbiter with a deterministic grant duration of one round, as in lFXimple I - -we

assumed that thie p)robability, po, if at null Ringbus request was independent of all other tequests

on the Ringbus. I Iowcever. the probability of a niull request at the. Ringl'us in our- Concert inodel

can depend on the previous requests at the Ringbius. TIhe rectson is as follows.

First we introduce some terminology. We term at request latched by the R ingbiis arbiter at

latched Ringbus request or a 1.10I request for short. In addition, we Lall the arrival of at nonnull

RingbuIS request from at Multihus an arrival event. Now, if the preCviousI I reques;t at at slice is a

null request then the next IAB I request at that slice will also be at null request if there is no arrival

event at that slice in the arbiter clock period following the latching of the preCVious n1.0 r-equeCst.

On the other hand, if the previous IA.BI request at a slice is a nionnull reCquest, then the nlext HI

request at that slice will he a null request if there is no arrival event at that slice in the interval -

between the termination of the Ringbus access (the data transfer. not the interval flor which seg-

mcnts are allocated) of the previOuIs I It IIrequesi arnd the next latching instant. These two situa-
tions are depictcd in Figumre 4.10. (Remeniber that " kr = ad'r hr.

r-

%
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Arbiter Arbiter
clock ... L.J clock JFLTLKLYL_1

NulRi \u ull Rn 'bus
rigisicquest RingbUs l I -, requL1%

su~iialsignal

I I Nonnull R ingbus 50I
IRingbus request

grant
signal

No iionnult Ringbus It(LicSZ (*

cau ariie in ibis interval -
(from this slice)

Figure 4.1: Two situations leatding to it null request .0

IhS it null Ringbius request l'ollows a iltiII RinigbLS request if no Ringilus request arrives

from di M ultihus in anl interval c and at nuill Ringhuis reqtiCst follows at nonnlull ti ngbtis rcqi test

if no R itghus rcqocst arrives from the Multihus in an interval d <.Note that if 11in -- di.

thcn at nutll Ringhus request must follow every nomintill Riugis re(lottc. To avoid this - si nce the
R~inlghuIS Model in this exaMPle (iind all the other examnples) does no! incorporatc t noll requiest

ailcr every nctntll request - we take /I,,, z-d - e lor ;oine c omant c. 0<c <c in all the cases inl

this sectionl.

If IV - 1, thel With Our- aSSlimpjtiOn of exponiential processing timle. the proaaility (if at null

I*R Il requtest follo~king at nul,1 IM rcquest is proportional to c and the probability of at null I .R II

reqttest i' olowing a non till I IM is prop~ortional to di - Itl (1frruns and di are deterministic in this

exaimple.) fly tking It,, very smnall (.01c ), we minirni/e the dependemcy of the probability of at

null IM r I -quCSt on thle previous IHU I request at die samne slice. fly taking IMPI large (.98c I we

inci ease this dependency.

If N is large and 4, large So that thle M ultihits queue is nearly always nonlempty with

R inthus reqttests. then / 0and the likelihood of* a nontiill R inghis reqtuest arri itig inl c or

d - MII is aboult the same1 (ats lonlg its (1> i,, . Is thle interval di I,0 ,, hats Smaill elf'ect onl

the probability of at null I[R BI request for large N and 4,= 1.0.

Thus we expect thle p~robab~ility of a nutll I H II request to depend quite heavily onl d ci M

for light Ritighits traffic attd diminish ats the Ringhlus traffic increases. As we stated earlier, the

H inghtus miodel tiised in the integration does not incorptotate thle dependen~cy of null teq ucst probal-

bilitics oil t/ imn -ta It inight lie expected tht thle in tegrationi reutIlts vt itld lie most awcitrate when

d- /tranmi is aldjulsted to redu1ce this de:pendency. Indeed, this does seeml to he thle case fliw N I

and LO1.: the integration antd siniul;ttion resuilts for lr(,i.t )I(- are closer than those for

% N N N %

or ~~~~~~ ~~~ ~ ~** 4 JS*,*'. F'-*-* , .. %
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fIins .98c. For olhcr values of N and 4'- there sccrns to bc no cotnclusive link. In fact, for N -4

and 6, die value of '1I,,, seemed to make no difference (as long as d -- I~a<c), as expected.

(I lence only ihc results for /ills -.98c arc shown in Table 4. 1.)

Examnple 2: *-: - 1.0c, S -:4, dctcrministic grant duration of onc round i.e. d ~c, rotating priority

with counterclockwisc rotation, asymmectrical access paths. p RI , R1 1.5, and 2 .5

TIhe integration and simulation results ar~e containedl in Tlable 4.2. Again the results agree

rather closely and again the results arec closest for light and very heavy Ringbus loading.

N 4' Irfl?i/C , ~'. Iw/C Ilftilchl( I I,11iIC iviRB IC ___

Integra0ion 3.00 0.0 0.50) 0.88 0.37 1.03
1 . .1 Simulation 2.98±.70 0.0) 0.54±.04 0.'91 0.36±.12 1.03±.17

Integration 3.00 0.0 0. 50 1.76 0.28 0.84
1 . .8 Simulation 2.84±.37 0.0 0.54±.*02 1.77 0.25±.13 0.80±.00

1 . .1 Integrationl 1.00 (0.0 0.50 1.48 0.97 1.61
Simiulation 0.97±.12 0.0 0.58 ±.02 1 1.56 0.97 ±. 14 1.57±.03

-~I n1tegration' I1.00, 0.0- 0.501 1.82 0.34 1.42
1 . .8 SiMUniuton 0.99±.04 0.0 0.5-7±.0l 1.96 t0.41±A.09 1.35±.04

2 . .~ Integration 1.47 0601 0.63 1.29 0.65 1.45
Siu2to 1. 0.008 0.6A 0.8!I ±.04 1.42 0.(:t)±.07 I .43±.04

2 05 09 Itegration 1.42 0.82 0.36 1.81 0.47 1.24
2 . .8 Simulation 1.31±.28 0.69±.08 0.27±.02 1.80 0.55±1H 1.29±.10

2 . .1 Integration 0.15 1.56 0.84 2.26 1.41 1.66
Simulation 0.08±.03 1.52±.14 0.94±.02l 2.3-2 1.37±.08 1.66±.05

2 . .8 Integration 0.15 1.59 0.17 2.29 1.14 1.64
2 . .8 Simulation 0.08±.02 I.S4±.03 0.12±.02 2.37 1.27±.O() 1.()3±.05

Integration 1.02 3.08 0.27 1.'7 (0.42 1.49
4 . .8 Simulation 0.9)8±.01 3.15±.2o 0.03±.0l 1.75 0.74±.14 1.46±.071

4 I ntegration 0.00 6.23 0.03 2.41 1.40 1.66
1. .8 Simulation 0 00± 01 6 14±.19 0.02±.011 2.39 1 .39±.06 1.07±.05

TFable 4.2: 1 1.Oc, S =-4, deterministic grant duration of one r-OtUnd i.e. d-c. rotating p:-iority

with counterclockwise rotation, asymmectrical access paths, pR =1)8 =.25, and 1YR1 =.5

% % %~

%
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Ixwiple 3: Ip I1.Oc, S- 4, geometrically distributed grant duration with mean d 4c, optimal

arbiter for geometric duration with mean d--4c. symmetrical access paths, p RIf R 1 .4, and

The integration and simulation results are shown in Table 4.3. In obtaining these results we .A

took 'trans -d -. 02c, hence lath =.02c for heavy Ringbus loading. Note that once again the

integration and simulation results agree rather closely.

/- Il/c c//" 'aR H IC ""R "/C"

Integration 3.00 0.0 . 6.58 2.10 1.67ii 0.5
Si1ulation2.95±.40 0.0 0.51±.03 6.50 2.01±.35 1.66±.09

I 0 ltegralion 1.00 0.0) 0.50 7.21 2.73 1.95
Simulation 1.00:±. I0 0.0 0.57±.00 7.20 2.65±.44 1.92±.04

2 0.5 Integration 1.20 3.20 0.31 7.01 2.72 1.95
S 0.5 IIL SiihiltiOnll.18±.12 3.22±.26 0.27 7.06 2.81±.53 1.91±.14

[e .......

Intgration 0.06 6.43 0.08 7.31 3.26 2.17
1.0 Simulation[0.03+.0I 6.28±.78 0.07±.01 7.30 3.25±.57 2.16±.12

Simulition' 1 03.±.08 10.86±.74 0.20-.01 7.11 2.93±.33 2.02±.09

ii.0 20.921 002 7.31 3.31 2.19
1.0 Sihiuhaiiu.)O-±.Oj 20.99±.821 0.02±.0l 7.36 3.36±.12 2.17±03 ,

Table 4.3: Ip - .0c, SA4, geointrically distributcd grant duration with mean d ----4, optimal
arbiter for geometric duration with mean d -4c, symmetrical access paths, p pi ---.4. and

P2 =.2.

E'xamiuple 4: S -4. deterministic grant duration of one round i.e. d= c, optimal arbiter for deter- i

minislic grant duration of one rund, symmnctrical access paths, p I--pl.4. p -. 2, and

1(ran --. 98c (i.e I dcterniniic).

This example is the same is Ixaniple I except for the value of 'hc object of' this example

is to examine the accuracy (if the integration restilLs when the Multibus is opcrating in the knee

region i.e. for N zN . We have already seen in the previous exaMples and haxe discussed that die

integration results arc the most accuratc for light Ringbus loading and \cr% hea% Ringbus load-

ing.

We attenpted to keep , (ta  (I 1 fl)((I 1, / ,RB) ;lpproximately equal to 5.

. - *~ **.*~ ** ~ -, , ,..1 %
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(This corresponds to a=5 in the M/M/I//N model discussed in section 2.4.) For this value of

n - .i-, N is approximately 6: thus we consider N :2, 4, 6, and 8. For i--.5, we took tj =6.0c

and for ,=1.0 we took 7t 7.5c. (Recall that iaW11---- and 0.) The corresponding integration,,

and simulation results are shown in Table 4.4.

N 4, trua, , i ,  c -/c i1,,.h 1/c -,,R_-IC WRIt/c ,

Integration 6.05 0.26 0.46 1.50 0.06 0.53
S . 09 Sinulation 5.81±.48 0.13±.0l 0.46±.46 1.50 0.06±.01 0.55±.55

4 0.5 0.98 Integration 2.58 0.79 0.39 1.42 0.06 1.00
Simulation 2.42±.07 0.52±.02 0.33±.0l 1.43 0.12±.0l 1.04±.02

Integration 1.54 1.85 0.33 1.49 0.19 1.32 ,-
6 0.5 0.98 Simulation 1.45±.03 1.23±.02 0.19±.0l 1.36 0.19±.Ol 1.42±.02

Integration 1.16 3.41 0.29 1.51 0.24 1.50.
8 0.5 0.98 Simulation 1.10±.02 2.44±.06 0.08±.01 1.31 0.25±.0I 1.66±.0I

2 1.0 Integration 3.12 0.26 0.42 1.54 0.14 0.86
Simulation 3.08±.13 0.15±.02 0.43±.OI 1.51 0.10±.02 0.87±.02

491.0 0.98,intgrtion 1.00 0.96 0.28 1.49 0.23 1.61
4 1. 0" SiitiiuO 0.91±.04 0.65±.03 0.27±.01 1.50 0.25±.0I 1.60±.03

Integraion 0.35 2.19 0.15 1.52 0.9 2.14
- 1.0 0.9, SimtlItin t0.27±.OI 11.75±.06 0.14±.0! 1.53 0.41±.0I 2.23±.01

I -,ntegration 0.1 4.041 0.08 1.5.3 0.47 2.45
Fb1 wSieruiutioI006+ 013.63+ _00 1.53 0.49±.01 2.53±.02.%

Table 4.4: S =4, deterministic grant duration of one round i.e. d =,optimal arbiter for deter-,,"'.,..

ministic grant duration of one round, symmetrical access paths, p -=pi -. 4, P2=. 2. and %

=trans .98c (i.e. 'trans deterministic).

h, every case listed in Table 4.4. , aIv,>y-im,,,,o (The S denote how the "

quiantities were obtaincd.) This is not surprising, especially for 4,--.5 since the access timcs have a

large deterministic component. We have already seen in Chapter 2 that the Multihus model with a

server-sharing queue overestimates i- if the access tiinc distributions arc deterministic. I lere, the

Multibus access time distribution is entirely deterministic and the Ringbus access time has a large

deterministic component: the Ringbus access rime is at least trMS , where loans is deterministic.
In addition, -AfReqv itn'gration > -l-Brqv sirnnuktinn d gintcgration <sgnlIuhton in every case

listed. 'These are ohviotsly related. A larger value ol'f l?"11% implies a sinillcr value of p0 and
hence a smaller value of g. Also, - inteation is related to f n . ,,!mtVrt1On  is lirger

*55 ~5~....,S-,..., .A .....-.. ,....-,.-. '
~is.s % ~ '\j. %% %~.~~ ~~~'-. ' %
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than it should he. then 1AlffcqY inlgration is likely to be larger than it should be. In addition. isit i

likely diat the probability distribulion of is skewed more towards shorter times than that

prcdited by our geometric approximation of it. 'Ilis wOrld cause the Ringhus to be more heavily

loaded in actuality - i.e. in he simulation - than predicted by integration: hence the actual

throughput of the Ringhus would be greater than predicted by integration. Since the probability

distribution of 1i would be more skewed towards shorter times for larger N. this effect might
simuilation wtexplain why the difference g. ginhlegrmt increases with N.

)iscussion %

The results predicted by integration of the Multibus and Ringbus models agree fairly closely

with simulation results of the overall Concert model for the four examples considered. We

ohscrvcd that the integration results were most accurate for light Ringbus loading (N <<N , small

4,) and very heavy Ringbus loading (N>>N ' I). This is in fact a general result for integra-

tion, as we discussed earlier, and can be justified analytically. We performed the integration for

several other examples with S-=4 and observed the same general trends as in the four examples

reported. We did not perform any integration for S>4, for which we expect the same general

trends.

The accuracy of the integration results in the knee areas (i.e. for N=N °) will depend

strongly on t',c various probability disttibutions, as we saw with the Multibus models in Chapter 2. '..

A great deal of fither work is requiied to clarify and char'acterize the accuracy of our integration

technique in the knee area.

Certainly, our four examples demonstrate that our integration technique works and that it is

a viable appmach if accuracy is not paramount. If greater accuracy is desired from the integration, -.

then the interactions between the Multibus and Ringbus models will have to be approximated by

more than just First moments. IHowever, this will be difficult, and probably infeasible, in most cases

when dealing with analytical models for the Multibus and Ringbus.

•."

J -a0 .,-.
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4.3 Siamlation 1: Tlhe Ifinghuis in (lie Concert Fnvirounient

In this section we present and discusss (lhc results of' a series of'simiulations to assess thle per-

I'm unance of" ie Rinightis - with eighlt slices - inl the Concert en% ironineiut.

Wve have already (discussed our sinlatiofl model and its parameters inl conjunction with di

simmlations reported iii setion 4.2. To recap, our simnulatioun model is thle overall Concert niodel

comprised of at Multihuis modei (one fo~r each MLtibus) and a RingbuIs model. We aISSume thlecr

NlMultibus model with long word and Ringbus accesses, discussed inl Section 2.9, flur the MulltibuIS.%

The R ingbuts model depends onl the arbitration algo~rithm and the R inghus access paths. Once

again, our standing assumnptions are:

- each NI'itiltihuls miodel has exactly thle samle paracter-s SO 1l1 MNII i.bS models are ideintical in

every rc(Spect%

- all thie random variables il. .Ir anii ~d 'Ian~d al~l tic probab~ilities I.4,and p' 1 are

mtuttally independent and statiommary

- the R ingbus model is completely symmctlic with respect to e-ach Miultibus interconnection.

[hle SiltIon61S incIlude thle MUI tibus- Rinigbtis interaction. Ill pailarLI. thle Sitlait ionl iodel

t~Itidifully incorporates the Ci-ict that a request from a Ni UltibLus calnot be latIcd by heI R ingbns

;:rbilcr unti lbte viJant from, the preCViolI is renCSt Ironi thi i uIltibuIs has terminated, as is the case

in the actual Concert system.

Ill theCSe simulaitions We atssumle inl addation to the previous assump~tions that:

1) tie processing time is exponentially distributed

2) there are no long word accesses i.e. I -0 (hence thle recovery timeI dIStribtmoi is irreclevant) z,

3) there arc only Ringbus accesses i.e. 4, -- 1 (hence thle Multibus access time distribution is

irrelevant)

4) the Start tip time is zero i.e. 0sat>

5) the Ringhus data transfer time f~an is deterinnistic and hence the duration it lbr which seg-

ments are allocated to a H inghuIS req neIst is co1nstanlt (d' /,r i (We have alreadyV

assumed in section 4.2 th rim is a decterini iistic integral multiple of c .)

The restrictions of'f 0 and 4' - I may Seem? restrict ixe but we make them becautse of space and

time constraints. To sonic degree, thie effect of 4, can be detcrininlcd by \arying 11) with 4, held

constant at 1.0. We make tile asstiniption of 4,I in particular becauseS we are cliicily interested in

thle performance of the Ringbius.

c *~.j i hi Rwe~hoN :iit lc ix c riod. %
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T he Paramneter% in the sianlla ions arc ats l'ollows:

I) The nunmber (if prKcssors on at Mtiltihus, N. We ike N 1. 2. and 4.

2) 'The mean processing time, il, W'e take lp-.0c, 10.Oc, 20.0c, 50.0c, awl sometimels ROO.Oc

and 2(X0.Oc-.

3) 'The RinghUs destination probabilities. pfl We consider threc differcia sets of Ringhtis des-
tination probabilities: asymmetrical, symmetrical, and uniformn, ats listed in Table 4.5.

rR11 RI! R11 RI! RB RI? RBf
Di stribution P1 P2 _ P3 P4 p I P.- 2 i

Asymmetrical .4324 .2162 .1081 .0541 I.0270 .0541 .1081
Symmetrical .2759 .1379 .0090) .0345 .0690) .1379 .2759

Uniform .1429 .1429 .1429 .1429 [.1429 .1429 .1429

Toth 4.5 inghus destination probabilities k

Bohthe asymmetrical and symmetrical Hi nehus destination probabi lity distributions ,ire ~-
ncgi-ti~c binary exponential distributions where tie exponent is (lie smallest num11ber of seg-

mcnts required 10 Connect the source and destination. That is, Ibr both the asymmetrical

and symmetrical distributions. pRl .(. 2 -sc9"i where svg(i) is the smiallest number of seg-NP.

nients required to connect thle sour1ce Slice to the destination slice islices away from the

sourIce Slice and C is a nornmli/ing constant. (RCall that theC sign or denotes (fie direction

around the R ingbius). F~or the :isymometrical distiibution. scg (i) is comvpumed assuming asyn-

metrical H ingbus access l)i:tlis and for the s inietrical distribution, scg (i ) is computed

assumning svmmnctrica!f Hinghi.1% access piahs. For exaleI, tlie iniirmunm nunher of segmrents

required to connect it slice to its neighbouring slice in the clockwise direction is one for both
R/I~avm) a. %

the asymmetrical and symmetrical access paths. I'hus PI 2ti"~ -1S~ and
P1I.wL. i" 2 KOnl the other hand, the mninimum number of segments required to

connect a slice to its neighbouring slice in the coulnterclock wise direction is thice for asym-0.

mectrical access paths and one f'Ir symmetrical access paths. Thbus p / e.n (~ilp- n

The asymimetrical and symmetrical access path% are intended to reflect thie difl1erenti distribu-

tion of' accesses that would be plausible with the respecti.e asymmetrical and symmetrical .

access pathis if thie accesses exhibited locality. '[he uniform distribution is intended to reflect

the distribution of accesses if the accesses exhibited no particular locality.

4) '[he Ringhus arbiter algorithm. We consider five different arbiter algorithms:%

i) '[he rotating priority (with counter-clockwise prioritY rotation) algoriihmn discussed in

Chapter 3 and secction 1.2.3. ThIiis is the algori thi employed in the actual Concert sys- -

'Ja- "4 V N N NtVeN%.
%~~~~~~~~- % pr *V,.%% 4 .
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The'lb greedy algorithm. '[his algorithmi pursuics a maxim-umn reward strategy -in cvery *.

arbiter cloc.k cycle it grants the maximum number or requests that it can. 'Tics between

request sets with the same reward arc broken in fluvour of the request set with diec

greaitest nutmber of the largest requests. Any tics remainiing af'ter this point arc broken

arbitrarily.

iii) The two phase greedy i,,iervaI algorithm. 'Ibis algorithm is best decLribed by first con-

sidering a single phase greedy interval algorithm. SLICh an algorithm alternates

between an idle interval and a grant interval. No nonnull requests arc granted during

the idle interval. IThe idie interval termninatcs when the First nonnull request arrives at

the Ringbiis arhiter, if there currently are no pending nonnull requests latched by thc

arbiter, or it terminates t,,. c after the end of' the previouIs grant interval, if there is

at least onec nionnull R inghuis rCquest ulngrantcd from the previouis granti interval. T[his

iiitiil idle interval of 1,,rb 'ccorresponds to the minimutimen between the termii

nation of a Ringbuis grant and the initiation of thc next Ringbus grant Cromn the same

Slice.%

As the name implies. nonnull requests are granted only during the grant interval which%

extcnds from the termimiation of the idle inter-Val Until the RinigbuIs access correspond-

ing to each gran~ted request has completed. '[lie actuall arbitration - i.e. deciding whichA
reCquest Set to granIlt - is (10itC Ouly at the beginnin- of a grant interval. 'The smen IN

greedy algorithmn discused in 4(ii) performs the ar'bitration ar this point. All grants

remain in effect unchanged timVtil their respective Ringhuis acce.:ses terminate.

Thus the duration of' a grant interval is dcterminied by the longest aIccess tin1e Of those

requests granted. Thbis could be a problem it' there was a high variability in the Ringbus ~

data transfer time, 11as IHowever, we assume that i,... is deterministic (see 6)). [his,

of course, ignores read-modify-write accesses, for which would be much greater

than for reads or writes. T[he arbiter algorithmn can be modified to deal With suIch

accesses. One such way is to tenninate a grant interval when all non-read-moth y-write

accesses ermninate and allow grants correspondling to read-modify-write accesses to

carry on into the ntext grant interval.

Now a two phase greedy interval algor-ithml consists of one single phase grecedy interval -

algorithm, which we Call the Primary phase, and a second single phase greedy interval

algorithmr. dclayed by 'orb '"' With respect to the IprilMrY phase. We caIll ibis second%

phase the secondary phase.

The single phase greedy interval algorithm w is m oti t cd by the finding in section 3.4 
.dumrations of' d rounds tend,, to 1ilign the rcq uests so that tht y ate granted it intervals

th til 1 -q lrict e opi a m-~ - - hic l~ rti lrf u li e n ee m nsi r n
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or I rounds. 'I11lus we expected the single ph1ase greedy interval algorithm to yield good

pcrlormance in heavy tia lic. We Iutiund. however, that it actuwilly yielded perlbrmance

hat was sually worc.. thuti the rotating priori!y algorithm (with symmetrical access

paths). Presumably. this was due to the idle interval of duration 'trb ;-C during which

no requlest are granted. We added the s condary phase in an attempt to improve the

utiliZation of the Ringbus segments and hence improve dhe throughput.

iv) The crossbar algorithm. With this algorithm the Ringbus is transfbrmed into a crossbar

interconnection.

v) The conmmonbus algorithm. With this algorithm the Ringbus is transformed into a sin-

gle time-shared common hus.

5) [he Ringbis access paths. For the rotating priority arbiter alporithn. we consider both asym-

metrical and symnmctrical access paths. " or the greedy and the greedy inlerval algorithms we

consider only symmetrical access paths. The issue of asymmetrical or symmetrical acce.s .

paths is irrelevant lbr the crossbar and connionhus algorithms. .

6) The Ringbus data tr:,nsfer time. IM1. .. In all cases we Like IMrtl. 7c, as a rough approxima-

tioll of the case ill the actual Concert system (when c -200nsec - see section 3.3.2 of Appen- .

dix A).

(Note: there is no point to iaking Itruns -6.8c here as we would have done in section 4.2.

The reason is that no new requcsts call 6%c latlied by the Ringhus arbiter until >1,.b atler

the Ringbus access - i.e. dala transfcr - has terminated [since the grant correspnnding to this

access contillules for lu, past the termination of the accessl. Since i,b > here Isee below]. ,-,.

the nlinimum interval between the termination o,' an access and the latching of the next

request from the same Multibus is always >r. For . =7c this interval is in,.b. and for %

Itrans -6.98c this interval is 1Ib t-.02c. The diflhrence between the probability of a request

arriving from a Multibus in an interval of i,, b and an interval of /,rb +.02c is negligible.)

7) The Ringbus arbitration delay, l,,rl, . We take t b - 2c as in the actual Concert system for the

rotati!ng priority, greedy, and greedy iiterval algorithms. (I lence d1- 9c for these three algo-

rithms.) [or the crossbar and comnonhus algorithms, we take 1a,.b s--c to reflect the greater

simplicity inherent in the arbiter algorithm in these cases. (I lence d- 8c For these two algo-

rilims.)
I'. .- '4

%

8) 'libe block size /B and the run siie R. In all cases ve took It 100 and R 10.

The following tables CoI)Imin the si;'-,iinon estilts. The st(aistics rcported are the mean pro-

cessor ccle time. . (the reciprocal of the th rouglpIt of' the processor), the Mutllitls waiting .

AP ....-. * .
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time per access, (,.. the Ringbus waiting time pcr Ringbus access, fvRu1. and the mican nnhcr of

Ringbus grants in progress per arbiter clock period. g. A grant is considered in progress for the

total Lime that at least one Ringbus segine is alluc-tcd to the grant. Since segments reiiiiin allo- :

cated to a gratnt fbr a pcriod b,,,. after the termination of the Ringhus data tunsrer time, a grant is

in piogress for i total time of" 1, btrans , ar which equals 9c for the rotating priority. greedy, and

greedy interval algoritims and 8c for the crossbar and common bus interconnections. 'llie ± fig-
ures associated with each statistic indicate the corresponding 95% confidence intervals.

i s i Ation I'robs: asymmetrical N = I

Arbiter Algorithim Rotating Rotating G reedy Interval Cross- Commionit

I Access Iaths Asymn. Sym. Sym11. Sym. bar Bus

'~wc~~29.7±2.1 28.3± 1.4 23.75±.09 24.X 1±.56 10.13±.37 04.05±.03
- 0 0.0 0.0 0.0 0.0 0.0 0.0

wj,/c 14.5±2.1 13.1± 1.1 8.59±.80 9.64±.48 2.27±.19 50.02±.33

g 2.42±.17 2.55±.13 3.03±.09 2.90±.07 3.98±.09 .9992±O(X)5

I. 30.7.1.6 29.6±1.1 26.21±.88 28.15±.55 20.53-L.94 ()4.0'+.1l

i~40.0 0.0 0.0 0.0 0.0 0.0
1 0.0( VR/BC 10.8±1.7 9.57± 1.19 6.32±.76 8.28±.27 1.67t.30 45.10±.57

g 2.35±.12 2.43±.09 2.75±.09 2.56±.05 3.13±.14 .9981.002

. 36.5-.-:1.9 35.1±1.2 33.9±1.6 3.42±.7, 8 29.9± 1.3 6.. 17±. 16
o/ 0.0 0.0 0.0 On( ,.0 0.0

I l,i/" I 6.18±.89 5.33±.75 3.93±.76 6.81-.4 1.00 1.18 34.83.±.58
,, I 1.97±11 2.05±071 2.+2±.101 1.98-0415215-09 .997±.002

,c/c 61.!±3.3 02.3±4.8 61.4±4.1 64.59±3.4 58.6±2.7 70.9±.8 -
-- /c .0 0.0 0.0 0.0 0.0 0.0

i/i/c 2.19±.49 1.86±.22 1.51:t.35 4..10±.34 .44±.10 11.6±1.7
g 1±. 11.6±.09 1.17±.08 1.12±.)() 1.09±.051..90. -

'lablc 4.6(a): Ringbus simulation rcsuhs

" RInembcr. hce g repreoofs the acraevic rLilumbCr of Fraltts it, ,)gto per round, M\ lhich ke mcait the
")%Cragl:c t11,I 1 OII f" gai per iotild to %%hich oie o lnu ic q 'mcNne . ;,r aloced. n othe ,a'ciae number of
grints l per toitd ztiillug Sw te1ilcts (0I it c Coi'idCl ;t ;rant to he in pttress ti thl toll time ihlt ; llca',t
One Ritivg l %.ii el it is loc:itld t) ihe giant 'llic c !' i'z iii ii illOkitetd to a vi;iil hor a petriod Imb
after the icrnilinlo[In 'it t lhe ltti [.ihs (I11 i t ,tei ' viat. i; l is ii piorrc,, for total tilic Of o tif i larb

% %

%'.



252 Intrgralio and Simulation

Ik)si in.Itiou Probs: symmtcricalI N-:1

Arbiter Algorithm Rotatii Rotming Grecdy Interval Cro Is- Common
Accss Paths Aym. Sym. SVI . Sy 1. hbr Bus

,, 38.5± 1.4 29.6±1.4 23.80±.40 25.38± .04 16.35±..0 4.05±.03
0.0 0.0 0.0 0.0 0.0 0.0

ip i5.0c ivp/ 23.2±1.6 14.5±1.5 8.67±.33 10.22±.58 2.54±.26 50.02±.33

g 1.87±.07 2.43±.I1 3.03±.05 2.84±.07 3.92±.10 .,)92±.0005

- 39.14±.74 30.6±1.2 26.75±.43 28.76±.58 20.63±.A 64.09±.lI1
A 0.0 0.0 0.0 0.0 0.0 0.0

-Il.O 1 wxRR"c 19.3±1.1 10.55±.95 6.90±.00 8.73±.50 1.81±.26 45.10±.57
g 1.84±.03 2.36±.10 2.69±.04 2.50±.05 3.1I1±.10 .1))8±.002

t,,././ 41.')±2.5 36.35±.70 34.4±2.2 37.2±1.3 30.17±.71 64.17±.16 .

I00c /c 0.0 0.0 0.0 00 0.0 0.0
wR /c 12.4±2.1 6.38±.79 4.20±.72 7.05±.48 1.07±.23 34.83±.58

.. . g 1.72±.10 1.98±.04 2.10±.13 1.94±.07 2.12±.05 .997±.002

6..7±4.7 62.9 3.9 62.3±3.1 65.0±3.2 59.8±3.5 70.9±2.8
i/. 0.0 .0 0.0 0.0 0.0 0.0
iV0iO 1/c 4.04±.99 2.19±.47 1.59±.24 4.58±.41 .46±.1 11.6±1.7

9 1.13±.08 1.15±.07 1.16±.(00 1.11±.05 1.07±.06 .90±.04

Table 4.((b): Rimgbus simulation results

-

... ."
,,- %-%?
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5.

k4
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I )stination IProbS: un1iror-M N:--I

A rb i ter --Algorithm R('taing Rotating I Crcdy J iterVil J Cross- Common

Access Paths Asyin. Syin1. Syrn. Svin. jbar Buts

1I~c/ 47.9± 1.9 42.9±2.1 29.18± .8fi 2-9.26± .53 W.69±.39 6A.05± .01

il 1/C 0.0 0.0 0.0 0.0 0.0 0.0
Aw n/c 32.5±2.1 27.6±2.1 13.95±.78 14.0I±.54 2.89±.35 50.02±.33

9 .5± 1 .08±.08 2.47±.07 2.46±.04 3.84±.()9 .9992±.0005

loi,/ 48.3±1.9 42.7±2.1 31.19±.71 31.81±.49 20.77±.62 (4.09±.l I
0.0 0.0 0.0 0.0 0.0 0.

fv'g / c 28.2±2.2 22.7±2.1 11.3 1±.(A 11.89±.70 1.92±.31 45.10±.57-.
g 1.49±.06 1.69±.08 2.31±.05 2.26±.04 3.09±.09 .998±.O()2

;-c'49.0± 1.4 43.8±2.5 37.4± 1.6 39.3± 1.1 29.5± 1.1 (A. 17±. 16-
0.0 0.0 0.0 0.0 0.0 0.0

I, -20.0c wR j /c 19.2±2.2 13.8±3.1 7.31±.63 9.23±.36 1.25±.28 .14.83±.58

9 1.47±.04 1.64±0) 1.92±.08 1.83±.05 2.17±,08 .997±.(X)2

I~~.c65.9± 2.6 65.4±5.4 62.6± 3.4 65.7 ±3.8 59.9± 3.3 70.9± 2.8

/P 0.0 0.0 0.0) 0.0 0.0 0.0 0.0
IWZS11.OCL6.04C 6.4.±90 4.55±1.22 2.96t.6W 5.29±.47 .51±.18111.6±1.7

I .09( ±-04 1.10±.09 I.l5:t.06 I.Il0±.00 1.07±.00~ .9)0±.04

Table 4.6(c): RillobLIS silaitionl rCSUltS

l.

a.J

.1 J

%7%

all.,! a o
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)cstin,,,im, Irols: asy'mmetricalN-2

S ,i b -r A g , i i h n -.. . . i fl g " i (i i i g -G c e e d y I n t e r v a l . o s s - . . . I , n -
A i it r lg ri h mR tat l t R u l i g - --I~~l) r _ _ II l

6 60.2_2.2 55.8±2.7 44.1±1.4 4j.4±1.0 20.79± 451127Y0±.17
I%/c 25.1±1.2 22.9±1.4 17.09±.76 18.70±.58 8.55±.34 58.71±.30

wpR5.0c 'it /C 18.1±1.1 15.8±1.4 9.96±.69 1.66±.52 3.23±.20 53.84±.02
g 2.39±.09 2.58±.13 3.26±.10 3.03±.07 4.77±.08 .99)8±.)002

1'wh/ 59.3±2.8 55.9±2.1 44.79± .97 47.46± .48 28.29± .47 127.77±. 18
I A. 20.1±1.5 18.42±.87 13.21±.48 14.17±.38 5.58±.20 53.71±.51lp : !01(.0(' is /( I01:151 .1 .8

IRB/' 17.3±1.4 15.5±1.0 9.80±.52 11.24±.25 2.90±.18 53.80±.)4
g 2.42±.1I 2.57±.09 3.21±.07 3.03±.03 4.52±.08 .9996±.0003

i/c 58.9±2.0 56.0±2.2 47.5±1.0 50.18±.82 34.3±1.1 127.78±.30
, /c 12.5± 1.0 11.2± 1.) 7.76±.69 8.70±.34 2.93±.20 14.04±.57

w -20I.0c WRI?/C 14.8±1.1 13.2±1.2 8.32-±.30 10.08±.30 2.19±.23 53.40±.13
g 2.44±.08 2.57±.10 3.03±.07 2.86±.05 3.72±.12 .9994±.000

,.,./c 71.4±2.9 70.2±2.2 66.5±2.2 70.8±1.7 61.7±1.9 128.05±.34
i,5." 3.10±.51 2.89±.59 2.12±.43 3.01±.42 .93±.15 22.1±1.4

ViwR.'/(" 6.86±1.0 6.04± 1.08 4.12±.44 7.26±.26 .99±.17 45.78± 1.04
g 2.01±.08 2.05±.07 2.16±.07 2.03±.05 2.07±.06 .998j-.002

/~1~c114.9±5.3 114.6±6.2 112.0±5.6 117.1±5.3 110.5±3.3 133.3±1.8
i ,,c .84±.17 .78±.17 75±.12 l1.14-1-.24 .43±... 4.16±1.3lp -I ! 00.0I.

i-vtLtif 2.74-L.46 2.25±.37 1.82±.'8 .83±.3() A9+±.08 19.4 ± 2.8

9 125±.~ 17j~ 1.281.001 1.22-L.05 1.10(±.04 1)58±.013

able 4.01d): Ri, Lg)us siruultion ,csults

,1

; 1e

'-V - "; ;-":--'..% ,".-:-.,S-''. '""" ::."[":, :':" ''% .':'.".'.'"-"":" ',.'''v...''.



Integration and Simulation 255 .

I)stination Probs: symnuucirical N 2

Arbitei Algorithn Rotating "oitilgl Greedy tCommon

Access PAlh .Asymn. Sym. Synli. Sym. bar Bus

I,,ch/( 77.3±3.9 56.6± i.7 45.26±.67 47.92±.90 27.30±.42 127.80-±.17
I,/c 33.6±1.8 23.3±.84 17.72±.43 18.97±.61 8.82±.27 58.71±.30

p-- WR/I 26.6±1.9 16.26±.83 10.56±.32 11.93±.46 3.51±.25 53.84±.02
g 1.86±.(Y) 2.54±.07 3.18±.()5 3.00±.0 4.67± t:.08 .9998±.0002 i.

, 76.4±3.5 56.9± 1.1 45.27±.92 48.48±.75 28.82±.54 127.77±.18 P'..

Itc 28.3±1.7 18.97±.68 13.32±.60 14.91±.51 5.79±.38 53.71±.51
WR H /C 26.0±1.8 16.04±.71 10.06±.42 11.79±.35 3.21±.33 53.80±.04

9 1.88±.09 2.53±.05 3.18±.06 2.96±.04 4.43±.0) .9990±.0003

It..h/C 78.0±3.2 58.7±2.3 48.30±.54 51.51±.57 34-i2±.74 127.78±.30
I/C 21.1±1.6 12.4±1.4 8.02±.41 9.23±.56 2.97±.33 .44.)4±.59 %
/ 25.4± 1.7 14.8± 1.4 8.84±.19 10.74±.40 2.31±.23 53.40±.13 ,

g 1.84±.07 2.45±.1 0 2.98±.03 2.79±.03 3.70±.08; .9994±.0006

'(,./,/('82.3±1.8 71.2±1.3 67.2±1.7 71.7± 1.3 61.4±1.8 128.05±.34
,, /500( iac 6.19±.82 3.11±.52 2.29±.36 3.18±.19 .9.±.08 22.1±1.4 ,
/I, WCI/ 14.6± 1.0 6.89±.74 4.52±.51 7.76±.44 1.03±.11 45.78± 1.04

g 1.75±.04 2.02±.04 2.14±.05 2.00±.04 2.08±.06 .998 i-.±02

tCl,.c 117.0±4.9 114.2±2.6 112.6±3.6 1116.4-4.2 110*.8±5.8 133.3± 1.8

Ip -100.0c tl/C 1.17±.26 .81±.12 .72±.13 1.17±.18 .,12±.07 4.16±1.3
,' I? /c 4.70'_±.68 2.7(1±.45 1.9 +.0 - .e,8±.33 .52±.10 19.4±2.8

1.23±.05 1.26±.03 1.28±.04 1.23±.04 i.15±.06 .958±.013-04..L,;

Table 4.6(c): Ringlus simulation results
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I )estu ihtion Irobs: utilbrm N -2

Arbiter Algorithm nlatlig R lot!ti ng ( 'cedy Interval Cruss- ( )ltlt)l

Access I' aths Asym. Syrn. Sy m. Syrn. bar Its ,

9,.,,i,./ -' t ,.-S± 2.8 85.2±t 2.4 56.1 ± 1.2 57.1 I ) 28.01 ± .09 27.80± .1 7 % I

-- A. 43.211.4 37.5±1.3 23.03±.78 23.48±.54 9.18±.34 58.71±.30
'WP I '/c 36.2±1.4 30.6±1.2 15.99t.61 16.46±.47 3.84±.32 53.84±.02

1.49±.04 I.69±.05 2.56±.05 2.52±.05 4.57±.11 .9998±.(02 -

C.I.IC/c 97.2±3.7 84.8±3.3 56.48±.83 57.47±.85 29.35±.70 127.77±.18
II/c 38.6± 1.9 32.4±2.1 18.79±.60 19.12±.92 6.13±.42 53.71±.51

lp 10.0c wR/"C 36.5±1.9 30.2±1.8 15.76±.47 16.32±.44 3.54±.30 53.80±.04

g 1.48±.00 1.70±.07 2.54±.04 2.50±.03 4.36±. 10 .9996±.0003

, 97.5±2.1 84.,±3.4 57.82±.85 58.61±.63 35.1±1.1 127.78±.30
, / ' 29.8± 1.4 24.1±1.5 12.37±.70 12.53±.68 3.14±.35 44.04±.59

wR I / 35.6± 1.3 28.9± 1.9 14.1 1±.46 14.(,1,±.44 2.58±.30 53.40±.13

g 1.47±.03 1.70±.07 2.49±.04 2.45±.03 3.64±.1I .9994±. (Xi

I((h./C 97.7±2.5 86.9±2.5 73.0±1.3 74.8±1.2 60.7±2.1 128.05±.34
50.0c c 11.4±1.7 7.92±.85 3.68±.54 4.13±.47 1.01±.14 22.1±1.4

0 wR /c 25.2±2.4 17.9±2.0 8.15±.57 9.96±.22 1.19±.14 45.78± 1.04
g 1.47±.04 1.65±.05 1.97±.03 1.92±03 2. 1±.07 .998±.002

121.3±5.3 118.1±4.6 114.2±3.3 118.7±5.2 1109.7±5.5 133.3± 1.8

7- 100.0(. /c i 1.83±.49 1.38±.24 1.00±.25 I.45±.301 .42±.08 4.16±1.3 .N
),1 .c ?/c 8.0±1.5 5.71±.61 3.57±.23 b.25 .38 .5()±.13 19.,1±2.8

g 1.19±.05 1.22±.05 1.26±.04 1.2I-.0%] 1.17±.06 .958±.0 13

hable 4.6(f): IRi,,gbus simutlation, ,'csulLs-}'}

%
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I)estifation Probs: asymmetrical N 4
-.-------- -----..------ -- - -r----- - %

Arbiier Algorithm_ Rotating Rotating ( reedy Interval Cross- Common
Accss Ptlhs Asym. Sym. Sy,11. Sym. ha~r Bus _.

11,.4 ±3.1 11.12.3 88.-± 1.4 94.11.0 "5 7

I,/ I 83.5±2.3 78.7± 1.8 61.1 ± 1.1 65.24±.80 34.82+56 185.58±.25 %,%
v =5.0c iR, /c 17.65±.77 16.09±.61 10.14±.35 11.56±.25 3.36±.19 53.93±.01

g 2.43±.06 2.56±.05 3.25±.05 3.05±A3 4.78±.07 .9999±.0001

, 117.9±4.1 111.2±3.9 88.0± 1.6 93.7± 1.5 53.21± .05 254.99± .42
t /'c 78.1±3.1 72.9±3.0 55.7±1.3 60.0± 1.1 29.73±.60 180.45±.53

p 1 VR/c 17.6±1.0 15.9± 1.0 10.04±.39 11.49±.37 3.32±.16 53.92±.01
g 2.43±.08 2.58±.09 3.26±.06 3.06±.05 4.79±.00 .9998±.0002

Iih/C 118.2±4.6 111.1± 2.9 88.5± 1.7 94.0± 1.2 53.78±.80 254.95-t.45
020.0c t/c 68.4±3.5 62.8±2.3 46.1-±1.5 50.13±.86 20.28±.88 170.27±.69

w/C 17.6±1.2 1 15.78±.71 10.11 ±.43 11.52±.29 3.24±.20 53.)0±.02
g 2.43±.10 2.58±.07 3.24±.06 3.05±.04 4.74±.07 .9998±.0002

, 118.7±3.5 112.2±3.1 92.33±.68 98.0±1.4 67.9±1.2 255.03±.22
50. ,,A. 39.9±2.2 35.3±2.9 21.7±t 1.1 25.00±.85 6.33±.00 140.3±2.2

w'R j/ 16.55±.82 14.73±.98 8.90±.31 10.77±.32 2.26-±. IS 53.83±.05
g 2.42-±.07 2.56±.07 3.11±.02 2.93±.04 3.76±.07 .9994±.0(04

t,,.,/ 131.7±2.6 127.9±2.3 2". 1 2.9 127.5±2.9 112.5±-2.5 255 + 71

t, -100.0c t1/ 111.3±2.0 8.51 -1.2 5.55±.77 8.06±.94 1.86±.26 91.0±3.6
ifVR/'C 9.39-k1.33 7.77±.' ) 4.94±.37 8.24_±.25 1 9.151 52.56±39

g 2.18 -. 05 2.?4±.04]- 2.35±.06 2.25 ±.05 1 .2715 .99N+. It)1

2i4.5±7.6 214.8-&1',.2 2!4 .2+8.' 218.6A4. 7  1 )2i.±. .4. 1 .992 259.0 ±2. 7
lit /C 1.70h.21 I.2.+.7 1.37±.19 2.32±.30 .72±.07 17.7±3.2 -20c /c 2.99±.42 2.60±.45 1.95±.22 5.29+.31 .51 -. 04 30.1±3.0

g 1.3, 1 ±.05 1.34±.05 1.34±.05 1.31-).03 1.21 ±.05 .985±.01)

Fablc 4.6(g): Ringbus simulation results
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e)cstinafion Probs: symmetrical N -4b.

Arbiter Algorithm Rotating Rotating (rcedy LInerval Cross- Common

Access Pah s Asvm. I Sym. Sym. Sym. bar Bus

t 154.1±2.9 113.8±3.5 89.8±1.2 95.8±1.1 54.19±.58 255.11±.30
ip -50c t,,./c 110.1±2.2 80.1±2.6 62.02±.84 66.58±.84 35.44±.45 185.58±.25

wg,I/c 26.63±.71 16.52±.85 1I0.48±.28 12.00±.28 3.57±.14 53.93±.01

g 1.86±.03 2.52±.07 3.20±.04 3.00±.04 4.71±.05 .9999±.0001

I,. ,/c 152.9±5.1 114.3±3.5 89.6± 1.0 95.9± 1.3 54.3 ± 1.2 254.99±.42
. i,/c 104.1±3.7 75.3±2.6 56.9±.68 61.6±1.2 30.52±.78 180.45±.53

, 10.0c 'c 26.3± 1.3 16.65±.84 10.43±.26 12.02±.31 3.6 1±.29 53.92±.01

9 1.88±.X 2.51±.08 3.20±.04 2.99±.04 4.69±.10 .9998±.0002

,.g./( 154.2±4.4 1 14.9± 2.6 89.9± 1.3 96.24±.99 54.99±.64 254.95±.45
t,/c 95.1±3.3 65.7±2.1 47.05±.72 51.66±.78 21.06±.81 170.27±.69ip 2t).0c

Irw/RB/c 26.6± 1.1 16.77±.64 10.49±.33 12.08±.24 3.54±.18 53.90±.02

g 1.86±.05 2.50-.05 3.19±.05 2.98±.03 4.64±.06 .9998±.0002

to,././c 154.3±3.4 116.0±4.5 94.0±1.2 99.9± 1.3 68.5±1.1 255.03±.22
-, -50.0c ,;/' 65.3±2.5 37.7±3.5 22.5± 1.1 26.8± 1.3 6.44±.54 140.3±2.2

S c RB/C 26.1±.91 15.8±1.3 9.44±.27 11.44±.28 2.44±.16 53.83±.05

g 1.86±1.)4 2.47±.0) 3.05±.04 2.87±.04 3.73±.06 .(Y)94±.0004

t,,..t./ 157.9±2.7 1130.2±3.1 123.3±2.9 .128.4.8 112.6±2.5 255.3±.71
/IV/(. 25.8±3.4 9.95± 1.7 6.13±.72 8.53±.65 1.98±.18 91.6±3.6

P In/c 20.4± %.2 9.30±1.2 5.58±.53 8.67±.19 !.19±.09 52.55±.39
_ 1.82±.03 2.20±.05 2.33±.06 2.23±.05 2.27±.05 .989±.(X)l ,

. 219.2±5.5 215.3±7.8 1215.7±9.0 "2/8.6± 7.3 2 1 1.4± 6.3 259.0±2.7 .
-/ i 2.84±.70 1.62±.30 1.37±.24 2.35±.27 .71±.08 17.7±3.2

;, 2,,.,,c P/c 5.95±.83 3.00±.30 2.11±.201 5.56±.27 .55±.07 30.1±3.0

g 1.31±.03 1.33±.061 1.31±.04 1.21±.04 .985±.010

Tablc 4.6(h): R igbus simulation rcsults

I-...,-
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I )estination Probs: unilirm N.=4

Arbiter Algorithm -Rotating ! Rotating Greedy Interval Cross- Common

Access Paths - Asyrn m1. Sym. Sym1. barBU
,Yc,./,. 193.5.z4.1 170.3±2.8 111.9±1.5 114.10±.95 55.6±1.1 255.11±.30
I,/c 139.5±3.0 122.3±2.2 78.5±1.1 80.26±.64 36.53±.74 185.58±.25

1r'5.Oc -vR I, 36.5±1.0 30.68±.69 16.02±.39 16.61±.21 3.93±.26 53.93±.01
g 1.48±.03 1.68±.03 2.57±.04 2.51±.02 4.59±.09 .9999±.(X)I

I~.-i./( 193.7±3.3 170.0±4.7 112.2± 1.1 114.0± 1.2 55.7±.99 254.99±.42

I- IA. 134.8±2.5 116.9±3.5 73.66±.94 75.05±.91 31.6±1.0 180.45±.53
1, 10.0c

wRB/c 36.57±.82 30.6±1.1 16.10±.24 16.57±.28 3.94±.25 53.92±.01
g 1.48±.02 1.69±.04 2.56±.02 2.52±.02 4.58±.08 .9998±.0002

1 93.6±2.3 171.4±3.1 112.1±1.5 114.1±1.0 56.28±18 254.95±.45
j7 A.20.0c 124.4±2.0 108.0±2.4 63.5±.81 65.2±1.2 22.0±1.0 170.27±.69
, iiR 11' 36.48±.61 31.0±.74 16.06±.35 16.59±.23 3.89±.20 53.90±.02 v-.

_ 1.48±.02 1.67±.03 2.56±.03 2.51±.02 4.53±.(Xi .9998h.0002

. 193.5±4.1 172.1±3.9 113.9±1.4 115.9±1.7 69.3 1.6 255.03±.22

/t50.Oc ,,/c 94.3±4.4 78.7±3.3 36.6±1.8 37.8± 1.8 6.62±.60 140.3±2.2
t, B A' 36.3±1.1 30.8±1.1 15.22±.48 15.79±.47 2.58±t:.24 53.83±.05

g 1.48±.03 1.67±.04 2.58±.03 2.47±.03 3.68±.) .9994±.0004

i.,,.h./c 193.0±4.9 171.2±6.4 132.3±1.8 135.8±2.2 II . ±2.9 255.3±.71
,.- =100.0c t" 48.4±-4.0 34.7±4.4 10.94±1.3 12.67±.99 2.03±1 91.6±3.6

q/c/ 32.2± 1.6 25.2±1.9 10.02±.42 11.65±.27 1.32-L.10 52.56±.39
g 1.49±.04 1.68±.06 2.17±.03, 2.1 I±.041 ?.26 j:.00 .98±.001-

I/, c-228.0±5.1 2208-6.8 216.135.8 2?1.3±5.6 1210.6± 11.3 259.0±2.7

t/*/ 5.15±1.5 3.43±.66 2.05±.39 2.94±.40 .73±.13 17.7±3.2
;P nan/,.20,,.O,,¢ /I/c 10.7±1.7 7.00±.82 3.93±.471 6.82±.23 .60±.07 30.1±3.0

9 1.26±.03 1.30±.04 1.33±.04{ 1.30±.03 1.21 ±.06 .985±.010

Table 4.6(i): Ringbus simulation results

"lhc results in Tables 4.6(a) through (i) indicate little variation in the performance with dif-

fercnt access paths and arbiter algorithms for light loading. a!; one Aould expect, md large v;ria-

tion in the performance for heavy loading. 'lhcm variations in perlfrmmnce fior he,, y loading are

illustrated in the following table of the throughput with I- 5.0(' relatike to that % ith rotating -"5
priority and asymmetrical access paths.

54.
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Arbiter algori thin (Sym. acc ess paths)7
I )csr. Probs. Rotating 7 Interval Greedy Cross-

Asyrn. 5% 17% 2% 46%
N I Sym. 23 ( 34 38 58 .

LUni. 10 39 39 65

Asym. 7 21 27 56
N :2 Symn. 27 38 41 65

Uni. 12 41 42 71

Asym. 5 21 25 55
N 4 Syin. 26 38 42 65

Uni. 12 41 42 71

Taible 4.7: Percent increase in throughput for -- 5.0c relative to that for

rotating priority arbi tcr &lgorithni w idh asym metrical access paths

The Figures 'In 'Fable 4.7 indicate that thc R iimgus throughput call be increased 20 to 409o in La

heav.y loading relative to the throuighput with the rotating priority arbiter algorithm and asymmetr-%

ical acct-,s paths. In other words. time throughput or the actual Concei t system can be impr1 )oved in

heamvy loading by at Icast 20 to 40% by using a hetter arbitcr algorikhm and symmetrical access

path%. l comparing the improvement in dhroughpmt with rotating priority and synmmetrical access

paths w ith the improvement In through91put Wilit Lit, interval or greedy algorithim (both of which

yield 1:m()it the samnme pedllinuancc) and syrmnetric.4 access pathis. we can -,ee that the change Fromi

asymmtin6cal to symmetrical access paflhs accounts far 1/5 to 1/4 of the improvement with asym-

mctricol destination proh.ibilities. about 1/4 of the improvement with umiifomini destination proba- -

bilitics. amid over 1/2 of tlc iimpro~r'emncnt with symmetrical destination probablilities. Interestingly,

the impromcnient in throughput witlh the interval and greedy algorithms (with symmetrical access-5.p

paths) remained about the simme for hoth uniliwrm and symmetrical destination probabilities. indi-

catiig that thie improvement in throughput contributed by thesc algorithms also chanmges with the

destination probaibilit ies but in an opposite manner ito thait contributed by the syimetrical access

paths.

For gencraml destination probahilitics we cannot draw too many conclusions from 'I able 4.7 '5

besides that the throughput can be improved by at least 20 to 40% and that both the degree of

improvemntn and the relative contribution of 'the arbiter algorithmi and symmetrical access paths%

depend strongly on the destination probabilities [able 4.7 does gi~e somec idea though - which of

course must be balanced with the costs - of the relative advantage of different arbiter algorithms

and access paths. 5.-,

Another way ito chara~teri/c and compare the pci fornmince of the various arbiter algorithms

5' %%.5.
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is by thcir saturationl throughput i.c. the maxiinui throuighpuit achuievable. TIhis is it particularly

ulSCful and convenient way to characterize the perlorflanco: because thie Salturationl poiit depends
only oil tile arbiter algorithil and the destination probabilities. TIable 4.8 lists the saturation

throughput g't (inl nican numllber of grants in progress per arbiter clock period ) With thle varliouiS
arbiter algorithms and access paths considered in this section.

D estination Probs.
Algorithm Access Path -Ui

Commonbuls n/a 1.0 1.0 1.0

Rotating ___Asyrn. 2.4 1.9 1.S

Rotating ___Syrn. 2.5 2.5 1.7

Interval Sym. 3.1 3.0 2.5

G reedy Symn. 3.3 3.2 2.6
)osshar n/a -4.8 4.7 4.6

TFable 4.8: Saturation throughput For' various

algorithmns and destination probabilities

Iablo 4.8 show; clearly the relative ordering- in term11s Or throu'Lghput in saturation of the vari-

ouls arb!ier algorithms anid cCess I~MtllS Considered. Note that Tlek 4.8 also shows clearly that the

saurt thl()ughptlt dcre~Sass th de stination probabilIi ties change fromn asymme tricatl tL)~i

metrical it) uniform.

lit all the Silulations the greedy airbiter algorithm yielded better performance - although not

by mnuch - than die two phiasc interval algorithm. '['his Was at Slighltly Surprising result considering

*that, extrapolating 111om1 our finding With four1 slices and p0 0 in section 3.4. one would expect an

interval algorithm to be optimal flor heavy traffic. Onl closer examination this result is not so a

surprising. Presumably, die result is at consequitence of the nonz.ero) arbitration timec. As already

mentioned, the single phase interval algorithmn yielded poor performance (be to tile idle interval

* ~during which no reqticsis are granted. [Hie two phase interval algorithm is a simp~le m~teimpt to util-

i/.e the Ringbus during the idlle period. but it has thle ~onsequeCeI Of caulsing additiolial eCqutlt

conflicts because onle phase 1iollows the other by less than the duration of the grants. Wdally one%

would like thle phases to he nonoverlapp~ring bolt this has the drawback of imposing at nininiui"

witit of one phase (the duration of a grant) until the next requeCst Canl be granted at a slice after

the previous grant at that slice terminates. 'Thus there seemns to lie no way to avoid sonmc sort of%
performance penalty due to the nontero arbitration time when implementing anl interval-type e

t' As before. a V am~ is coiisideied to be iii proe'ress for the totl I i Out a, least ne Riiighus cgnientt is alto-
% ~calcd to the grali

%" %
%. %-N
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algorithm. 'Ihis suggests that it is important to include the effect of nonzero arbitration time when

trying to detcrmine an optimum arhiter algorithm Ibr the actual Concert system.

Ilie interval algorithm sufllcrs from anodher disadvantage: in light tra.mc the synchionization

of the requests with the phases adds to die total wailing time of a request. In some cases with light

loading, the throughput with the two phase interval algorithm is actually lcss than that of the

rotating priority algorithm with symrnctrical accCss paths. This suggests the obvious: for best per-

forimance the arbiter should be able to change algorithms to adapt to changing load conditions.

''lie overall throughput of the Concert system is - where Ioje is the mean cycle time of

a single processor. (Recall that i,-,.I = + I 3fr + Iw,. I- (I t f#)((I -- )4,,,ni i-al)-) As a function

of ip the overall throughput is maximum at /P 0, monotonically decrcases ats i , decreases, and is

asymptotic to a curve in the family -=-. Becausc of the nonlinear asymptote of the overall .
/p

throughput it is more convenient to deal with the mean cycle time, flor which an equivalent state-

mcnt is: As a function of IP. 'ch* is minimtm at I =-0, monotonically increases as Ip increases,

and is asymptotic to t cyle =-p +flh, +(1 i fl)((l - 4')I,,AIi + 'illdth lw

simple first order approximation of the overall throughput as a function of I.:

I rnin in)-r) iin ,.'n KO|; for. 1p !"Pr't-I/ bfl)((I -)I'.MI "/ 4I"a,/Jl ) < '.'cycle".

cv ll'-f- +(l A((l - Or)Mm) + jm?)) otherwise.(4.1)

-ii -- - .?.

t,... is the value of I when ip = 0 (and all other parameters fixed). Fquation 4.1 is a con-

vcnicnt approximation since it depends only on one parameter, 'to('. aside from the fixed input

parameters. Furthermore, .C/e can be related to the Ringbus throughput when P =0 - which we

denote by g 1 0 - as follows.

First, when ip- =0 a request from a processor must wait for the requests of each of the other

N I processors to complete before it must proceed. I lnce.-
-main a

+cce-:P' / N (1 + J)(( l- #) aMli/ I-4"aRt )."

Second, recall that IRR ='J/lR + d, and thus

ip, =o SA

d P +Jf d cPO +R3~ ~ ~4 _ Wo_ RB + -- -Fo + ,,s R.,
1 -Po !-PO

-Irortn)(Note that Igjj is not the same :is 1,,,' since , aR is a Function of the Ringbus loading.)
'I 1ird. the mean spacing hetween the termin.mtion of" one Ringhus request and de arrival of

ic mea spacig hct.-..,n.he.,e

%:..

fN 
.

,f, , , ," , ,, , , , , , .-.- . .- %... ,.,,,. ... . ,... .,. ... ... ...P ., . .,P. .. '.,P
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CPO iseult ( - )-""¢-

the next Ringhtis request at the aiune slice, l-P equal toj. Thercore
I -P r "4

I =0
Shfromt which it folows that

ta.Vf B aRR 1IM a,

+ (1-i+ 9)1P N=0 (4.2)

(provided that gp 0O).
If the Ringbus throughput is saturated when /P:=0 (note that it need not be saturated for

small enough ),then g =0=g Sand % P

irin - (I +)tNSd "'
it!)'ae "P-/- gSt (4.3) ,-,-

Note that while gt -o may depend on fl and 4'. g-"' does not. Hence equation 4.3 allows the

determination of ole as a function of/f. 4', and N provided that the Ringbus remains saturated

for t. =0.

Note that equations 4.1 and 4.2 also allow the icsuhls obtained in this section I'tr /3 -0 and

I 1 to be cxtrapolaitcd for other values of/? and 4...,

q,¢ Wi

,ii

~. -.,.

-V _

,,pI.
"

"a-. I

,*,J.,;,i

*
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4.4 Simiulation II: The Actual ('oncert Systt.ii

In this section we present tie results of it series of simulations of the actual Concert system.

as implemented, in order to give some idea of the performance of this system and now it varies

under the influence of various parnltcrs. The simulation model and tile manner in which the

simulations wcre pcrformed is the sanme as for the simulations in section 4.2 and 4.3. All thc

assumptions and parameters are the same as those listed in section 4.3 except for die following:

Ringhus arbitration algorithm: rotating priority (counterclockwise priority rotation) as in Concert

Access paths: asymmetrical as in Concert

Ringhus des tiation probabilities: asymmetrical (its listed in Table 4.5). We take these probabilitics .

as asymmetricl to show the Ringbus (with asymmetrical access paths) in its best light and to

correspond it) the expected asymmetrical bias in the request probabilities. We expect that most

al)plicatio ns will be structured to take advantage of the more favourable clockwise direction for

accesses, implying an asymmetrical bias in the requcst probabilities.

Ringbus access probability: We take , --. 2, .4..6, and .8 to illustrate a range of operating condi- ".e"

Lions. Note that the performance with 4, :- 0 (no Ringbus accesses) is riven by the isolated Ringbus .

model of ,,cction 2.9 and the pcrirmance with 4, 1 (only Ringbus accesscs) is given by tie

results in sec.tion 4.3.

Arbiter clock period: c -- 2O0nsee.

.Multibus access tiue distribution: We assume it deterministic access time with duration 1.10p,&c- %

=5.5c. (We arrived at this duration by assuming that all the Multibus accesses of" a slice are

directed towards die slice giobal memory and that the Ringbus port of this global memory is

lightly loaded. Ii the actual Concert system, the mean Multibus access time of slice global memory

is about I.lOgtsec when the Ringhus port is heavily loaded and about 1.05scc when the Ringbus

is lightly loaded. (See section 3.3 of Appendix A.) Thus our assumed 1.IOIsec duration is slightly

pessimistic for most cases.)

As before, we aKsumc the start ip time is zero i.e. 0,,,., 0. there are no long word accesses

i.e. --0, die Ringbus data transfer time is deterministic with duration d :7',, and the Ringhus "

arbitration fitne is deterministic with duration tarb =2c. .* .,

'[lc simulation results are listed in Tables 4.9(a), (b), and (c). : % :

% %"

o"4" t

'.5:
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N-:1
.2 .4 .6 .8

11.88±.47 14.52-t.64 19.35±.98 24.3± 1.6
5/.c 0.0 0.0 0.0 0.0
Rp /5.0C iql BC 2.50±1.3 5.73±1.26 9.84±1.40 12.4±1.8
g 1.22±.15 1.94±.09 2.28±.12 2.39±.12

yt,.A 17.0±1.4 18.82±.88 22.06±.61 26.2±1.2
,,/, 0.0 0.0 0.0 0.0

-- I.Oc /AC. 1.49±.88 3.71± 1.03 6.26±.94 8.55± 1.0
g .83±.17 1.52±.14 1.98±.11 2.22±.09

I,. .k/C 26.5±1.2 27.83±.89 30.1±1.4 32.9±1.0
Ow/C 0.0 0.0 0.0 0.0
WR Y /C .84±.56 1.80±.63 3.03±.79 4.56± 1.4

g .56±.06 1.03±.V) 1.44±.07 1.76±.07

/.-yh,/C 56.3±4.6 58.8±3.2 59.2±4.) 61.4±3.1
tw/" 0.0 0.0 0.0 0.0

p iRI/C .30±.20 .73±.48 1.12±.22 1.62±.24
g .24±.03 .48±.05 .74±.06 .94±.05

105.5±10.7 109.5±8.3 111.0±7.3 110.1±8.0

10.c1/C 0.0 0.0 0.0 (0.0
WR/it A .16±.15 .28±.10 .52±.22 .79-±.22

_g .14±.02 .26±104 .39±.04 .53±.05

Table 4.9(a): Concert simulIatio; resuts -

.'F

... ,.-

' ,' ,'-.
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'1, .2 .4 .6 .8

16.33±.97 24.6±2.2 35.3± 1.8 48 2-:4.1
I,/c 3.78±.40 7.74±!.1_ 1 .98±.90 19.2±2.1

"p z5.0c TRH/C 4.66±1.16 10.4±2.4 14.0±1.6 16.8±1.8
g 1.79±.09 2.32±.16 2.45±.16 2.39±.14

19.69±.54 25.8±1.4 36.2± 1.7 47.8±3.8
It/c 2.27±.22 4.94±.68 9.65±.b7 14.9± 1.8.

pI.Oc ivRP IC 3.50±.92 8.09±1.56 12.9± 1.1 15.6±2.4
g i.47±.II 2.20±.10 2.37±.11 2.42±.20

27.99± .78 32.2±1.2 39.1±2.0 49.1±1.4
S20.0c t/c I.18±.09 2.34±.26 4.85±1.13 8.78±.69

p 4I,1C 1.88±.44 4.95± 1.19 8.80±1.48 12.7± 1.0
- 1.03±.07 1.77±.00 2.19±.08 2.35±.07

57.9±2.5 58.5±2.8 61.5±3.0 65.8±2.1 7.,
S5../C .42±.05 .69±.09 1.15±.16 1.97±.44
p5 iR l/C .68±.27 1.60±.27 3.1 ! ±.66 4.93+.97

g .50±.07 .98±.06 1.40±.07 1.74±.05

, 107.3±5.8 1082±5.2 109.6±5.7 - 11.6±6.i -

-!O.Oc .22±.05 .31±.07 .44±.10 .61±.I0

i'/ R B 4' .33±. 17 .84±.31 1.29±.17 1.9 - L-.21
__.... . .28±.03 .53±.04 39..79 .06 1.03±.05 .

210.1,:t:9.8 208.1± 102 04 6. 1024.

, A .!0_±.03 .15±.07 .20±.04 .23-±.06
,g f200.0c i , l/"'C .21±.07 .39±.14 .63±.22 .86± 131

g .14±.O1 .28±.02 .41±i.04 .55±.,,

lable 4.1(b): Concert simuladoti results

-.'. J--

%.:
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N.w4

, .2 .4 .6 .8

tcVh. 30.50±.94 49.4±2.9 73.1±2.5 95.6+ 1.8
-0A' 17.67.-.63 31.8±2.2 49.5±1.9 663±1.2

-[p =.0c ,R/I/C 5.65±.90 11.75±.95 15.49±.95 16.94±.58
1.88±.06 2.34±.07 2.38±.08 2.40±.05

lo-.le/c 30.7±1.2 49.2±3.1 71.7±4.5 94.7±3.3
12.92±.75 26.7±2.4 43.5±3.5 60.6±2.4

i, =10.0c F'?H/c 5.26±.99 11.5±1.5 15.0±1.3 16.64±.93

g 1.89±.05 2.35±.09 2.40±.08 2.43±.08

34.3±1.1 49.7±2.4 71.5±3.9 95.3±3.4
it 6.76±.74 17.5±1.6 33.5±3.0 51.3±3.1

tp C20.0c FVR BA 4.16±.85 10.3±1.0 14.5±1.2 16.73±.93
g 1.68±.07 2.32±.07 2.41±.08 2.41±.07

Icte/'C 59.3±1.9 (.5±2.4 77.3±2.1 97.1±3.7
t5/c 1.94±.24 4.73±.41 12.3±1.0 25.2±2.9

tp A50.0c i'VR /C 1.85±.40 5.00±.64 9.86±.97 14.2±1.2
g .97±.08 1.79±.00 2.23±.05 2.36±.06

1cle'/c 107.7±5.0 110.9±2.5 112.6±3.5 119.9±4.4
- -,/C .80±. 11 1.34±.15 2.59±.32 5.32±.98

i lOC" 1 .80±.16 1.90±.37 3.75±.37 6.33±9.7

.g ..... . ........ 54 ±.0 3  1.03±.l3J 1.53±.05 1.91±.06

I.ICA"/C 207.6±6.3 208.1±5.:) 212.0±9.2 212.0±9.4 PA
I.i" .34:±.07 .52±.08 .78±.13 1.08.±. 14

p =:200.0c i , I?,,c .36±.14 .84±.21 1.43±.26 2.03±.20
____ _ g .27±.03 .55±.03 .82±.04 1.08±.05

507.7±13.5 511.9±18.5 509.9±15.6 511.7±26.2i
-,/c .13:1:.04 .18±.04 .22±.03 .28±.04

PR/ IC .15±.06 .28±.04 .47±.06 .64±.08
g .11±.01 .22±.01 .34±.0! .45±.02

Table 4.9(c): Concert simulation resuIlts

Ixamining Tables 4.9(a), (b), i id (c) we can see that the mean total waiting time (or wasted

time) per cycle - given by i, + i,,i I - can be quite large. 'Tis waiting time is largest, naturally,

for a given set of pirarnctcrs when the overall throughput, and the Ringbus throughpuit in particu-

lar, is saturated. We can derive a niecssry condition for the Saturation of thc Ringbus throughput,

as follows. U
-rt, the overall throt llhput must be above the "knee point". Referring to the approxima-

tion in cquation 4.1, the overad! dhroughput is above the knec point whcn

V .. oz
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-,.(norm), -mTrin N,¥d41-

1p+((l - ),H 4 1R. 7 ) < .'/e -- 0 (4.4)
g'4)

(Recall that I,. 1P I + --- 0)aMil -t-ag/l) and 1aRll __Rf .) Second, gt
" must equalWT % %,

g.". Therelore a necessary condition for the saturation of the Ringbus is

- ,. (or,,,) < / N.Vd-.
1p + ((W ,/,) A1 + ,,,G ? sa< (4.5) ,

or on rearranging

NSd - (o,
+p +/alIi < + ( -- aMll - 'aRB • (4.6)

g

In Table 4.10 we list this inequality for various values of N and destination probabilities in

the actual Concert system (i.e. 8 slices, rotating priority algorithm, and asymmetrical access paths)

with fi 0. Note that d2=9(- 'aMji z5.5c, and 4ag" K )-10.5c (from Appendix A) independent of
the destination probabilities.

)estination I-robs. N giat Necesry condition for saturation

Asymmetrical 1 -2.4 -P + 5.5<254 VN.

2 -2.4 LP +5.5<55,

4 -2.4 - + 5.5 < 115%p %

Symmetrical 1 -1.9 L_ + 5.5<33+'

2 -1.9 L +5.5<71+
-C

4 -1.9 -+5.5 <1464

Uniform 1 -1.5 + 5.5<434,

2 -1.5 - +5.5<91".
C

4 -1.5-LP + 5.5< 187,
_ _ _C -- _____'.

Table 4.10: Necessary conditions for Ringbus saturation in the actual Concert system .- -

Operation in the saturated region of throughput is undesirable because of the associatcd

large waiting times. Inequality .4.6 provides a nicans to adjust para~metcrs to pos,;ihly avoid opera-

tion in this region.

.- ;

",,r'-,.Pe-
= 'L'.' ''LPL# "

"
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Chapter 5

Conclusions

Since conclusions specific to the Multibus and Righus have already been presented, this

chapter covers the general conclusions that can be drawn from the research in this tome.

We can now address the three questions raised in the Introduction.

What is the performance of the Concert Multiprocessor?

We can still not answer this question directly becausc (he performance depends on the .'

models employed (which may be dictated by the application piograins) and the model paramtrs

(which certainly depend on the application programs). I lowcver, we have developed techniques to

determine the perlbrnance. Assuming the simple processor model pre;ented in Chapter 1, 'AC -'

have shown how to determine analytically the performance, using throughput as the metric, for

any Concert-like system. This analytical approach involves decomposing the overall system into

Multibus and Ringbus subsystems, which may be modeled in isolation using the models formu-

lated in Chapter 2 and 3, and then integrating these models, uising tle procedure ill section 4.22. to

determine the throughput. Tlhe integration procedure is in Kict an approximation based on match-

ing the first Iomens of the interactions between the Multibus and Ringhus models. More accu-

rate results that this procedure yiv'lds can be obtained ia simulation. Simulation is also tile pie-

ferred method to inc!ude features which are diflicult or culllbersome to handle ill the analytical

models and to allow sbes - such a. eight slices - that are too complex for the analytical approach.

The performance of the actuil Concert system with eight slices has been eslablished for

some different parameter sets by the simnlation results presented in section 4.4. %

Why is lite p rformance as ii ;,? What factors inltictice the performance?

Tlhe pcrformance of Concert. as mo)deled in this thYci::, dopends critically on the parl.licters
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of the simplc processor model. The performance is especially sensitive to the mean processing

tiiie. tp and the probabilit) of a Ringbus access, q.

The effect ol diffcrent Ringbus architectures and dilfercnt Ringhus arbiter algorithms on the

perlormance is small cxcept when tie Ringbus is heavily loaded, it) which case thcsc factors can be

significanL

I low can the perform-inc e k- improvcd?

There arc two orthogonal ways in which the performancc can be improved:

1) change the physical structure, or

2) change the input parameters i.e. change the characteristics of the application pro- -

grams.

The more obvious changes in physical structure have already been discussed in the conclu-

sions of Chapter 2 and 3. An important part of the work in this thesis has been est iblishing the

ultimate performance that can be attained with Ringbus-like schemes.

The desirable changes in the input parameters are again rather obvious: locali/e the process-

ing as much as possible. However, the work in this thesis cnahles the quantification of the pcrtbr- I",.'

mance improvement resulting from any change in the input paramcte-,s. Such quantification is

important: it serves as a directional derivative in the l)crtbrmancc-action spie.

One activity is still required to complcte the first cycle in the itcrative process oi p(-r'ormance

modeling: a comparison of the predicted perl'brmance, based on the simple piocessor with param-

eters obtained from actual programs, with the actual performance obtained with the sanie pro-

grams. The purpose of such a comparison is to establish where the processor model and other

models need the most improvement and perhaps how to improve them. Certainly, the processor

model needs to be more specific and more oriented to the application program. As discussed in -,

Chapter 2. higher level models should be considered in future cycles of the modeling efTort.

...

;;-d
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Appendix A

Mecasuremnent Details

This appendix descrihcs how actial ineastiieneis ol' processing, recovery. access. amd wait-

ing 'nies were obtai ned. Tihese teri'; are deliiucd in section 2 (its well ats in tile amin text) for

convcnicncc. Mc;stired access times tind'or dil~crcnt conditions are givent in section 4.

1. Ba~ckgroind

Threec types of Multihus and IRiiiebus alccesses may occur: bylt' (8 hls), word (16( bits), ano(

long Aord (32 bits). A\ word access co nsists o!' tWo s111 imil'neous byte alCCCSSCe (a i high bvic mnd i

low by te). Conselquenotly. byte and wvord acces-scs are int!iSl 'iguisliable to anl ob:Crci of, tile Ni tl-

films or Riln11huLS leICSS thle Obse'- c exaii s !he 11111k'V , (byt e hligh n11 c signlal onl tile Miii-

tiihus (See tilc Moultibus 796 specificaition 11 '41 tir details) or thle IYTF1/WORI signal onl tile

R ingbnts (sec ,\nderson IA21 lt details). Ini partic-uhar, at byte and at word lid e [lie s~ame access

time distributionl.t A long word access consists of' (\&o corsecutivc word accesses (since tile Mul-

tihuIs Mid R inghtis arc, 16 b)its wide).%

T iminig dialgramls for the il-ice types of' accesses are given in Figi rs A.1I and A .2. The

diagrams depict [lie essential 11cattires ol'thc M 1ltihiis operation tromr the pit of' iew III thle pro-

ccs'.or orivinlatingf the access. 'I hec relative dtirationn and timing of' thle sigmits, Shim)) k only

approxim011ae. ill Q * and 1/I'l,\'* i efer to (lhe %.! itilas request and granlt signals 1,61 the o-
ginating processor: Alll)(* and A/l f'l(* reCtCr to O! I MUltibinS read and m rite signals respec-

tively:, ilnd XACKA reli s to tile NI nt ibuis ack n0\4 ledge signal.

I t W cmm .'. ii i hr ic ctiffecric tbc!% ccn dc-lw, ;, h\1( i mid .1 WORtJ jCCC, ' IN t~Ij\cNLtr

imt( sc w 5 ;i1,mI 4) '.4c ,c'.I ri.;isonii . o Uriliuii, Ii thI\ imliir I, ih~iiij' ownu 1'oili nwmour poll, mec

P- MA2. r-..
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ITI N*

MRI)( - I'

XACK*

F~igur~e A. I1(i): Ilytce and word access - read cycle

IIIRN-i

MW IC_

XACK -

Figure A.] (b): Byte and word access - write cycle

BIII(N*% -----

MRIK7-

igUre A.2(a): L ong word access - rcad cycle

IRIQ* L

IIIIRNO

MWIC,

X ACK'

Figure ,A.2(b): Long word access - write cycle

%
%*NA
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Note front Figres A.2(a) and A.2(h) that control of the Mtutibus (and hence (if the U
Riugbus) is relinquished between the successive word access of a long word access.

2. I)cfuiitions

All the following quantities are defined with respect to thc rising edges of 1?(T''* (the MuII-

tibus clock signal). I.et the Multibus requcSt and grant signals for processor i he denoted by

IRE'Qj* and BIPRN * respectively.

The processing time, denoted by Ip. for some processor i is the interval between the first ris-

ing edge of B(1.A* aler BR"Qi* goes high at the end of an access to the first rising edge of

('I.,K * after IIRlEQ.i* next goes low. In the case of a long word access, the end of' the second

word access is interpieted as the cnd of the !ong word access. Thus the interval betwcen the two

successive word accesscs of a long word is not called it processing tine. .'.

The access time, denoted by f, for the access of some prmcessor i is the interval between the

Iirst rising edge hefire IRN,* goes low to the firsi rising edge of IC('l.K* after URl'Qi* goes

high.

l'he recovery time, denoted by ir, for the long word access of some processor i is the inter-

val bctwc,' ilhe first rising edge of B('IS * after BRI1,V, * goes high at the end of the first word 4'

access to the first rising edge of I('K* aiftcr IIRI'Q,* goes low I'r tile Wcond word of the Ing

word access.

The wailing time, denoted by i, for any request lor use of tlie Nhiltihus by processor i is

the interval betwee tile first rising e(lgv of ( ! K* after R IEQ, * goes low to the first rising.dge_ . . ,

of /1(/.* belore IBRN* g;oes low. In the absence of any other traffic (it the Multibu there is .

always exactly one risinm edgc of BCI.'K* after BRI"Qj* goes low and before BIRN* goes low,

yielding ti = 0. %

'he above definitions were chosen so as to meet the followiig two constritints: I) the access

tine nust include the total time that Multibus resou rces are allocated to a tpaititilar processor.

and 2) lie waiting time must be z.eru Ir a single procussor on t Multibus. 'he time that Mul-

tibus resoturces a e allocaied to it processor is deternil ned by the Multibus a rbiier which is a siall

finitc state machine clocked on the rising edge of I(l A . We chose it) regard the :,lloction of

MuLtibLs rVSOIrccs to be decided on the rising edge of 1(CI *. This view iS 0ot unique: we could,'. -..

have jUst as well chosen the Miltibus rcsources to be Aloc,'ed on the edges of III'?N *. I low-

ever. our choice has thriee advantages: 1) the ,ilocation instants are Csilv dcimatc,ited by I( I A'. .

2) the waiting time can be defined so that it is casily dcn,,rcated by 1?(I K* (m i it is easy to

measure) and it is /cio foir t 'iglelc proutsor. Mid 1) our hardwac monitor -,he I )SI). soc the

next seclion) ,lso samplesll ,inals hct ilie ing edgec of BC/ A*, Note tht ou1 &de'fition of
A

P ,::

-_ . . , ," =t , = " "P" - = = % % %"%.% "% .%- "" - -. " " "." - ". . . "J .""% •" -
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,Icc's s Lille include,, the dlcliV of the Mullihius arbiter. This must he the case if we are to mieet our

fIrst con-t rai nt ice any dela) elChi l. increase-, the duration or any allcation (f' reuree,.,.

I he prc ion, dclimitno. arc dcpicted in 1Figure AA.

I1' K* J L F LFL[ lY L jLFJFUTYL ,i i Jf LFL

"tI '" -- -/-I I--

J- , J- -,-.

%

L.J
LL J _ __

tp{. til t*

*

11141 Q No

IIIIR N N*

igtr A.3: IlLIuscrafiOin of deiiitiois

The lIle iflCntrlels presented inl sectioln 4 il(liC;iLC that tlhere is little difference in access

times !'or reads and writes: thUS the IIRI)('* and 1111'7(* lines are omitted froini ligure A.3.

3. Time Measunrecents

All the measurcments reported in this setion were takeni with a digital logic analymcr with 10

nsec clock resolution t according to the definitions given in section 2. The ieasLrements were

pcrformcd on three slices of tie Concert system connected by the Ringbus with a Ringhus arbiter

clock (/.(*/.K) period of 200 nsec. All the piOc.s.,or Mnd memory bo;rds wre Microbar I )1IC".SK

and I)1R5() models resp c ively with all options set as listed ill Appcndix C. All the ImeasUl'e-

melLS ,erc repeated for several difI'erelit proceusnioinmory pairs on different slices. No notice- - "

able dil'l'reoces in (ile icamllrlments for the difkrent rcpititions were observed, thus we present

the Following ileasurellents as if only one set of measurements were taken for each case.

I A Gmold Ilu itoil n K II)-1) I)igaial I ogic Analyer

*.i, A

- V . ,*,; ,..-, ,.: .*:,..,;,., ,. ;',:--..:..__, ..,._,.. .,.............. .._ ..• ........
p r . .-. ..

IIJ Po 
. ,
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.1. Minimum Processing Time

l'xecuting the assembly language program

loop: bra loop

(corresponding to the single instruction word 60e) from a noll-local memory gives the smallest

possible processing time. The processing time in this case is the time it takes to decode the

instruction word 6Ofe and initiate the felch fbr the next instruction. The ifininimu observed pro-

cessing time in this case was 600 nsec: tle processing times varied almost uniformly from 600 nsec

to 900 nsec (in 100 nsec steps since the time is measured with respect to BfCI.K * rising edges).

To determine the smallest possible processing time for a program executing oLt of local

memory we ran the fillowing asscmbly language program: -

loop: movb a4@1, a5(4i1

movb A011 , a5((j,

bra loop

'I hc movb a4(r, a501i instruction reads the byte at the address storcd in address register a4
and writes the byte at the address stored in address register a5. We stored the loop containing the

movb instructions in a processor's local IISlI memory, installed non-local addresses in addres -C

registers A4 and a5, and measured the minimum piocessing time of the movi) insiruction. '[here

are actually two diflreit processing times associated with the movb a46a,,a5(h instruction: the

interval between completion of the byte read and initiation of the byte write within one movb

a4@, a(t instruction and also the interval between the completion of the byte write of one movb

a51,, a4@t instruction and the initiation of the byte read of tle lollowing movb a4@' a5ft instruc-

tiol. The intra-instruction processing time (i.e. the former of the two processing times just men- 41

tioned) was 600 nsec about half the time and 700 nsec the other half. The inter-instruction pro- "

cessing time (i.e. the latter of the two processing times) varied from 1.20 to 1.40 /sec.

We also considered (lie minimum processing time of a program executing out (f non-local

memory subject to the restriction of one non-local memory access per instruction. To determine

this minimum, we ran the flillowing assembly language program:

loop: movb d7, a5Q1,

:S

movb d7. a50r'
% %

11 ~- S ,,

,0-,,,

' , . • . . -, a. , . .¢ , .- -,. .-.- % . ...... ." o ',.... .- .:. , ...- ," . . - . . j .s" ,
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bra loop

The inovb d7. a5; ' instruction writes dhe byte in data register d7 to the address contained in

addre s register ;t5. We stored the loop containing the movb instructions in a processor's local

I ISII n,,mory. installed a non-local address in address register a5, and measured the processing

time of the movh instruction. This processing time consists of the time to fetch the single word

movb instruction. decodc it, and initiate the byte write on the Multibus. The processing timc of

the movh d7. a5(@ instruction was consistently 1.50 juscc. We also tried the movb a5(a, d7 instruc- 4,

tion corresponding to a byte read, and also measured 1.50 jAc.%C*

3.2 Recoiery Time

Ile distribution of recovery time between the successive word accesses of a long word access

was thc same for reads and writes: approximately halt' of the time the recovery time was (0 nsec.

and Ihe oilier half of the time it was 700 nsec. yielding a mean of 650 nscc.

3.3 Access Time

Since ,l. the memory boards are dual ported we have to consider the effect of traffic on one

port of" a memory board oil the access time via Ole other port. In all cases we found io difkrence

in the access time distibutiozis for bytes anti words and in the access time distributions for tie tywo.

words of it long word access.

3.3.1 Multihus Access Time

3.3.1.1 Multibus Access Time with Other Memory Port Unloaded .

In this case the access time distribution was approximately the same for reads and writes,

with a minimum access time of 1.00 jisec and a maximum of 1.30 jIsec. '[he actual observed distri-

butions are given in Figure A.4 below.

.. %

%. %--%

*
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% accsNcs 70

so-

25
3 2 accm-s

0 4.----- -Ttme

/ .0o 1.10 1.20 1.30 1.40 ,

ILSO-

Figure A.4(a): Multibus read access timc - other port unloaded

% accem.'es ,

so 45 50 -

25
3 2 accc.'S
... -.. .. -- .-,-,---"-

1.00 1.10 1.20 1.30 1.40

:-.%

Figure A.4(b): MultibUs write access time -other port unloaded

3.3.1.2 Multibus Access Time with Other Memory Port Loaded

We considcred two situations: I) accessing the local memory of another processor via the "

Multibus while that processoi is loading the I ISIB port of the rnemory, and 2) accessing the global

memory of" a slice via the Mullibus while other processors access it via the Ringhus.

1) Accessing the local memory of another processor:

We loaded tie I ISB port of the local memory by having the associated processor execute

loop: bra loop %

out of the local memory. We observed no noticeable difference between dhe access time distribu-

tion for reads and writes via the Multibus. As indicated in ligure A.5, the access linics varied

from 1.00 .sec to 1.80 jsec.

ON, %
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% aeCeM.Nes

50 I-, :lme/,t
100

. .

1.00 1.10 1.20 1.30 1.40 1.50 !.60 1.10 1.80

Figure A.5: Mujltibus access time - I ISB port loaded

2) Accessing the global memory of the slice:

We loaded the Ringbus port of' the slice global memory with 3 processors on another slice

and 2 processors on yet another slice all executing

loop: bra Ioop

out of the first slice's global memory (i.e. over the Ringbus). Figurc A.6 shows (he resulting access

time distribution for Muhibus accesses to the slice 3lobal memory. Wc obscrved no noticeable

difference in the distribution between read-, and writes.

% ncccxs.es

50 40 40

25 10 "
4 3 3 accc.,

/ tt Lime
1.00 1.10 1.20 1.30 1.40 1.50 , ,

JASCC

Figure A.6: Multibus access time of slice global memory - Ringbus port loaded

,... I
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3.3.2 Ringbus Access Time %

Figure A.7 depict, a Ringbus rcad wc-s (byte or word) combining die points of view of the

originating processor and the Ringlhus. for a singlc processor in a slice.

BCL',...._l-U-LFL1lLRJUlj11-U-I U UU' fl

IIQ J I _________ ____

RRF'J*
MRI)C*4

I.A"K L._LirIJU 1¢,'

ICLK Y L"FLFU LJU

i'latch ar rAns

R:Q*L.,
d~

Figure A.7: TIypicAl Riaigbus read access

RIFQ* is thc Ringhus request signal for the slice, it indicates that thc RIB has dctcctcd an

access that requires the Ringhus. IiNM* (short for enable Multihus) is the RinghuIS grant signal
for the slice: it indicates that the Ringbus request has been allocated the necessary Ringbus seg-

ments. I.CLK is the Ringbus arbiter clock signal. The Moltibus and the Ringbus operate asyn-

chronoUsly with respect to each other, thus IICI.K* and ILCIK are no( synchronized. Since RI:Q*
is generated fiom Multibus signals, it is not synchronous with ICI.1K. On the other hand, NM* '

is generated by the arbiter so it is synchronous with I.CI.K. .O,

We define a number of quantities with respect to the diagr:un in ligure A.7 as follows:

ta is the Ringbus access time (as defined carlier)
'Nm Q is i te normal time from initiation of a Rightis read access" to gneration of a

Ringbus request. We discuss shortly what normal means in this context.

1141chI is the interval between the generation of a Ringbus request and the arbiter latching in
on a rising ILC.K edge.

Ivtart i-i the overhead aSSOL iatcd "ith the s;rt of a I inghtis access. It is the interval from the '.

%%

aW ,...: , , ' , , . : ': 'gqg . . ... . . . .-' .': ' ''... . ",..:'..: -:.:''''.:'/:'..4..-4.:'.'.'... , . .'. '
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inlitiationl of die accC5.%t to iC ltching of thc Ringbuis request by the arbiter.

t'urb is thec arbitration delay.

':ais thc data transfer time. It is the interval fromi thC enol Of the arbitration dclay to the

tenmination of' the access.t Note that in actuality, dat transfers on dic Ringbus occur in tic

interval between thc end of thc arbitration delay and the failling edge of XACK*. 'IhUs ,

should bc interpreted its the total interval in which at data transfer could occur, not as the

intcrval in which it does actually Occu~r.

Finally, d is the total duration for which segments are allocated to a Ringhus requesL

Thbe observed means of these quantities with one processor in a slice are as follows:

1,-2.17 p~sec (We present at h istogram of' the access% time in section 3.3.2. 1.)

1IWnoRFQ 230 nsec

1Wh-_150 nsee -

=san 380 nsec -

1.38 jusc'

d=9.1 arbiter clock periods i.e. l.82pLsec. (Thei arbiter clock period wvas 200 tisec for all the

measuremients rcported in this Appendix. as nicnrh'ncd earlier.) d was either 9 or 10 arbiter

clock periods.

Since the Multibus signals are asynchronous with respcct to the at-biter clock, one would

expect qw',to be half an arbiter clock period. i.e. 100 nscc. In actual tisct. it is a little more than

this (as can he seen above) due to the delay contributed by at preliminary sampling stage incor-

porated in the arbiter to inhibit m-etastability in the final sampling of RFQ*. (tIoth is mneatsured

with respect to this final sampling.)

'Iestart overhead. 4 tn'and the access time, /,, vary with the spacing between the tennina-

tion and initiatiol Of Successive Ringbus accesses generated by the slice in which the processor is

located. (Of course. ,, also varies with the rate and type of Ringbus accesses generated by other

slices.) In section 2.9.2 we dctiii'.,d this spacing to he the processing tie (of the single processor

equivalent of this slice and we denoted it by F~~tq' igure A.8 depicts the same signals as in Fig-

tire A.7 for a Ringbus read access with 1A1Rqv=O0 ('1tiis was achieved with only two processors on

a slice, each eXecuting

loop: bra loop

f Bly initiation and termination or the riccc~m we mc-an the rirN rising edge of 11(1 K* before 11I1RN* sms low
and the first rising edge or IK'iK* before IIPRN woes high rcspucicivey. as. defined i% %Tction 2 of this Appcn-
dis. 

%A

% N % N h.
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out of the global memory located in some other slice.)

PV

IRIQ* - I

MRatI )C ___________________

L I, I I ,

IX.K 4- ,,,-t.'.

.5'..

A"fB _

Figure A.8: Typical Ringbus read access with ipfHeqV=O

Ilie reason that and t, vary with itpM /"v is that the I-NM* signal remains active for a

period after the termination of a Ringbus access. IF ,Af/Inqv is small enough, as in Figure A.8 the

t'NM* signal remains active past the initiation of the next Ringbus access and causes a delay in

the assertion of the RIFQ* signal (since the RIQ" signal fr tihe present accesses cannot be

asserted until the FNM* signal for the previous access has been disisserted). We definc I
• R I ' R N o R E 'Q : ,
'(,on) to be die time from the initiation of a Ringbus access to the assertion of Rl'Q* if

RQ is not delayed by the FNM* from the pre% ious cycle. Thus

IIPMoREQ .W • RNoRQ 'I lhe duration tor which FNM * remains active past the fermi-

nation of the previous access is tPrcv - +preyv -1prev 1pre, otp o- where the superscript pre

denotes the quanti:y in the previous access. Thus :.A

?/:: .- v(O .(jpr:,v nvt - ' I/
l qv II'RNfRI:'Q)

,.~~~ % % % % " % % ' , . ,' . % ., ". ,"." ' ''',"" """""%","% " "
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If I, -1, >0 then, ignoring a small propagation delay. REQ* is asserted at the sanc uime that

FNM* from the previous access is (liasserted. Thus esir equals 11i P RN t oRIQ plus one arbitcr

pcriod. Thercfore
B. PIRNIORI:'() t t i I
(qnorin)  + latch  i delay--0

Istart --- ] Bl'NtogF1.-Q

' (norm) + 'l)ay + d200nsec if delay >0

where 'lath is the latch time when tea =O. Finally Ma esart -Flat + t Mcasurcmcnts

revealed that the distribution of r is approximately the %ame (fairly uniform over the interval

1.30 to 1.45 psec) regardless of g '"" (although its mean is slightly diTcrcnt for reads and writes).

Thus 4 ,rt is thc sole contributor to the change in ia as ipi qv varies. 'Ihus
I1PRNMoRE"Q

( qrmn )' + flath -/ larb + trans if Idek v  0
to : I l'MNoRE:Q"

'(norm ) + larb -t- It rns + Idelay + 200 nseC if Id, )y>0

or simply

~.?,'..
a j'a ~ fdelay =0ItY r ) Iki'eh - Idlay + 200sec if Idely

where I (nom) is the accC.s time if Ida 0.

In section 3.9 we defincd the spacing between the completion of a Ringbus grant and the

initiation of the next Ringhus grant from the same slice, excluding the waiting time of the Ringbus

requests, to be the Ringhus equivalcnt processing time which we denotcd by I;lh' i

If Idelay 0 1RIleqt is Mlleq' plus 4 art and tarb and less the duration for which F, NM

remains active past the termination of the previous access. If 'delay >O RBq v is three arbiter

clock periods, i.e.

1Rirqv I 4- -start -+ tarb - s(arv + 'tarb + dprv / p e y) if Idlay =0

I f600/tsec if Ide/v>O

Pr 'rb Pr n V M/qv ./ RNtoRl'

Note that if 'dha) . =0. then tuweart 4 + l" a + I- 1 (norm) and
._.BIRNIoRFQ "

start 007n) + thinth, yielding

R I latc + art if 'dcli z, 0
S1600nsec if 'delay>O.

Nw iloeh -O and arb =2 arbiter clock periods, thus iR~ > 2 or 3 arbiter clock periods.

''he observed means of the quantities in Figure A.8 (read accesses with I 1 f7eqv= 0 ) are

fa = 2.47p.sec

tanrt = 690 nsc

• - ° p
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d 9 arbiter clock periods i.e. 1.801LsLc (the duration was consistently 9 clock periods.)

The situation just discussed I'r Ringbus read accesses is similar for Ritigl)is write accesses.

The observed means for write accesses are summarized in 'Table A.I.

,Mlkqv -fev(S large Ii &'v

/a 2.13 pscc 2.58 "-"-"
"1?IIR N toR I-'Q " " r.

I(orm ) 230 nscc n/a

Istar 380 nscc 830 nscc

tram s  1.35 1,scc 1.35 pec

9.6X200 nscc 9.5X200 nsec,

Table A. I

h'lese figures reveal several things. First. for large ap Ip v 7 1nd RNtoRsQ - are the

same for reads and writes while t is slightly less for writes than for reads. Second, for t qv

both a and/ia are larger for successive write accesses than tbr sticcessive read accesses. [his is
due to the fact that EAI* remains active for a longer intcrval after the termination of a write

access than aftcr the termination of" a read access. Thus the access time of a rcad or write depeids

on the type of access preceding it. We only miestigated cases with reads preceding reads and

writes preceding writes. 'Tird, d is slightly greater for write accesses than for read accesses for

both large tffIh''p ' and II le v .. 0' -,

3.3.2.1 Rigbus Access Time with other Memory Port Unloaded

The observed access time distribution for this case for reads and writes and for large £i
t l~e '

and ,A11 O'"lO are given in Figure A.9.

°J. % M

p
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%' accce..%s -
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Figure A.9(a): Ringbus read acccss tirne distribution - Ifa"" largc 
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Figure A.9(b): Ringbus write access time distribution - larg -0 large
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40 40 V V

25 1I I
5 ifccms

, ,I lime ....
2.'0 2.10 2.20 2.30 2.40 2.50 2.60 2.70

ILSCC

IFigure A.9(d): Ringbus write access time distribution - /MI"-V.=O

Note that IAlllcejy does not have much effect on the distributions except fir a horil.ontil shift
pi

rcflccting the larger mean. h'lie horizontal shift is indicativc of the duration for which NM*

remains active past the termination of the previous access. As mentioned earlier, this duration,

and hence the mean, depends on the type of acccss preccding the observed access. It secms ihat

most of tile randomness in the Ringlus access time. as least lor reads preceded Iy reads and 4

wvrtes prccedcd by writes, is due to thc random arrivals of' the RIQ* signal with rcspect to the

arbiter clock.

3.3.2.2 Ringhtis Access Time %sith Other Memory Port Loaded

We loaded the Multibus port of a slice global memory with four proce:;sors executing

loop: bra loop

out of the slice global memory on the Multibus. We observed the access times for accesses to that

same global memory over the Ringbls from anothei slice. No significant difference was observed

in the access time distribution for reads and wriie:i [or large / m''1 . Our observations Cor large

/jhq are summari/ed in Figre A. 10,

#.'.
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%J
5040 40

50

25 1 I

'2.00 2.20 230 2.40 2.50

igure A. 10: Ringhus a ccsS time distribution - lec/ jt' large and other port k)aded

For 1 fl '' v -0. the access timc distributions arc similar, except for a horizontal shift. Note that for

small enough 14i~et' v, the distribution. through the mean, does vary between the type of access

observed and the type of accems preceding it. -,

3.4 Access Timcs: General Observations

" !he access time disuibuuon is approximately the same for Multibus ,cad and write accesses.

*" 1lie mean Multibus acccss time varies from 1.05 jpscc to about 1.2 .Lscc depending on the

loading (-n the other mcmory porL.
S "The access timc distribution for Ringhus accesses depends on four citors:

1) the type oraccess.

2) the type of the preceding access.

3) the value of tM Ik , and

4) the loading on the other port or' the acccs's memory.

The slcond factor is only relevant when '
I
" is small.

* lhe mean Ringbus access time varies from about 2.13 ,tscc to about 2.58 jAscec depending on

the above four factors.

* •'he tail of the access time distribution increases as the loading on the other port of the

accessed memory increase.

• Rcads and writes have a Ringbus grant duration (i.e. duration for which segments arc allo-

cated) of 9 or 10 arbiter clock pcriods.

0 pMRerv cannot be less than 2 or 3 arbiter clock periods.
pP%'
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3.5 Read-Modify-Write Access Time

A test and set instruction has an access timc of alout 2.60 ,scc to 2.70 itscL on thc Multibus

and an accesis time of about 4.30 jtse on the inhius. (Thes'c figures are with thc other mcmory

port unloadcd in cach case). We did not dctcnninc distributions for thcsc two cases. For a

Ringbus acces, ic segmcnts arc allocated to tic access for about 19 arbiter clock periods.
-.,.
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Appendix B

In this appendix we present the proofs for the various ILemmas and Theorems which would

have hindre'd the fow of presentation if they had been included in the main text.

Theorem LI

With inidependent identical processors with deterministic processing ime 1p and deteninistic %'%

accss time ta served by a single bus in I:CFS order, the waiting time per request after at most two

cycles of every processor is the same for every request. Moreover. after at most two cycles or.,'-"0-

every processor the FC:S queue is either always empty or always nonempty at the ihstant a

request arrives at the que,,e.

Proor:

I.et there be N processors denoted by 0, I, 2. 3. • • •, N - I. ILet i.(n) denote the time

at which processor i makes its nth request fr the bus (i.e. the instant that processor i's
l1

th request arrives at the end of the queue). Let w(n) denote the waiting time of y.

processor i s n request. To simplify the presentation we choose to interpret li()

and w(n) as i mod N( + I i/ NI) and w! ,d N(" - I i/ NI) respectively whenever

i<0 or i>N. We then have

it(n + 1)= i(it) I- wi(in )-- I, + fp (2.L1)

Without loss of generality start counting the requests made by each processor at the .,

first instant at which all N processors have made at least one request for the bus and

let the initial condition be

100!) _< 110) _5< 12M) _ ... < fN - 10),,

with tics being broken by the ['Ct:S service discipline in favor (,f the srna!lest ntin-

bered processor.

V ,...,
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I et the interal between the requests of processor i and prosnsor (i 1 1) ,m4 N he

denoted by At,(n ) where

Ali( nl) -i , 1011" l(1)

where again we interpret A,(n) as Ait, ,d N( I /l NJ). Irom equation 2.1.1 we

have

li( 4 I ) -Ali(, )t -1 iv ,( i ) wi( n ). 
(2.1.2),.,.

lccause of' the deterministic processing and accc.s times. requests remain in their initial

ordering ror all, > 1: thus the FClIS queue enforces

wi ( 11 ) "14. A (0. wi(, ) 1 " -- Ali( it)) 
(2.1.3)

With equations 2.1.2 and 2.1.3 we obtain

1 11 
if v, ,j(n)>o

A ll(f - ) = - ,( ) A l,( I) if w , ( 1) = O 
v

But if wi j(n )=0, then -wi(i) Ati(i)>_,,. Thus Ati(n / I)>/ , or more specifi-
cally 

,

Aii()>I., i>__ 0 >2 (2.1.4)

i.e. after the first cycle of every process)r, the arrival of stucccssive requests must occur

at intervals of at least the access lime in . Ikiuations 2.1.3 and 2.1.4 imply that

wiI(n )_<w(n ) for n >2. with equality if and only if w,(,, ) -0 or A 1(, ) 'a fori.i >2

(or both).

"llierefore if ,(n)--0 for any i>0 and any n>2. then wi(n)s0 for every i0 and %

every i past that point, and if w,(,,)>O then A/, - ()I + 1) -:., implying that
1;( it f + - 1 w - ( n )'?-,

Now either wi(2)- 0 fi)r ome i>0. in which case w,(i )--0 for all i 0 and 1 >3. or A

w,(2)>O lr all i>O, in which cac Ail i(3) .I, and wi,(3)-w_ 1(3) fir all i>O which L

in turn implies that Afi(n ) i and w(tn):-: wN 1(2) (by equations 2.1.2 and 2.1.3

respectively) for all i>O and n>3. lhcreforc wi(n )-( for all i>O and n>3 where

C -0 or C>O.

"lhs the waiting time per request is the sanic for every request for ,>3. Moreover.

the waiting time per request for ni>3 is eider always zero or Always strictly positive,

implying that the. I '.S quetc is either always empty or alwvays nonempty respectively

at the instant a requcst arrives at the queue.

~.-.p. 'I.'%
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;xistence and Ergoiciy Assumptionis of Section 2.3

1. We assume hit a stationary prolahility distribution exists for i,..

2. We :ssume th.i the waiting time process is ergodic.

3. Wc assume that the time iivcrages necessary for any application of I.ittle's Law tU the queueing

system described in ,cution 2.1 exist.

Soinc (Conditions Guaraneeing Ihe Validity of ihese Assumptions

Wc first describe tie basic G/G/I//N queueing system as ai Markov process and then Con-

sider .om,: conditions on this Markov proc ss to show the validity of the above .issUmptions. We

assumc throughout that:

I) the processing time. In,. at each processor is a random variable with a stillionary distribution

Mnd IE'ip<O,

2) the access time. I,. is a random variabic with a stationary distribution and I:1]i,,1< .

3) the processing time random variables (one For each processor) and the access time random

variable are mutually independent.

q?-

I.et i be a N - I X I colhmin vector i.e. 4,, v.hose eleients indicate the time

that a reqiiest enters the queue (i.e. the time that a Ipirocessor makes a request) relative to the time

at which tile request presently in service hkgan its service. I c, the elements of , ie ordered so

that q i _ ... qN -- 1.Consider the wector 1 where w.t is the w.iting time of the nth

request to airive at the queue. We then have 1, --f(7?,. ,.) here ,,, is the service time
(access tim) of tihe tifh request to arrive at die queue, if), is tile Pro~essing Olime of tile ,lh

request, and J( ) is a deterministic operation on its argumnelts defined as below. '

ile operation f( )-

1. Insert i , p. in tile ordered list ditned by q,. so that the elements remain in inondecre ing-.._

order with respect to the clement indices. The list now contains N elenIC ts q'l.q'2. .'IN .%..

obe:ying q'l <'2:5 ... :,q'N. [Ie inieted request represents tile time at which tle next

request from tie p rocesor %ho,.; leie-t is pRi"enti,, in crice ig4ai i enters tlhe queue, rela- ION

tike to tile time It whch its prewnt rq I .t hc g.l, ser, ice.

- ~ , , , -,,,-,,e,,• .. . . .4 p - 4...-. .-.-...- • .,. -.... . ..... . .. . . . . . . . . . . . .. "' +": ;': 4 *g::*%: *;% .. . . . --: ":; ::::::::::::::::::: :
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2. i ita.(0. w,, +Ia -q 'j), the waiting time of the next request to arri~c at die queue.

3. Subtract q'l from all N entries in the ordered list q'i.q'2. " " .q'N. )iscard ihc zero valuc i.e.

q(,j ,I), - q,, I -q' . I<i<N - I %here q(, 1), is ie i element of -(I,, , This subtraction

updates the request arrival times relative to die time at which the next - i.c. de 1) Vh

request began service.

Iclle sequence 1 1, . n> I. with solic initial probability distribution Pr(1ijo<.)t describes a

discrete time continuous state Markov process with stationary transition probabilities (since .( )

is deterministic nd I and/p, are stationary random variables).

Let ,v)( , , ) denote the %, step transition probabilities i.e. p" '(7.A )s IPr( in set A R N

after v Iransitions). If we define p( )(.e,A) - p(.A) and p(A) - I'r(ZtE .4 then we have
1 )(r, A f p("1(-.A )p(.-,, j) for v> and

RN

fA)p~ >

RN

If /'r(7, CA) is independent of n dhen dle process d,.cribcd by 1.7,; is strictly siattinary ad.

1( is called a stationary probability distribution. " 1

W,. deimce the Sequcuce (I to be periodic with pcriod A if" , =7 . tr ni> In br

some integer in >0 and some n Al <00. _

We are now prepared to consider sonic conditions guaranteeing the validity of the lExistence,

and Ergodicity Assumptions.

(ase 0: I% 0 for every ii>in for sonic m>0. In this trivial ca.e lirt Pr(t' <y) certainly
n . 0 0

I I
exists and t,- lim , - 0. Illms a stationary piobahility distribution cxists ,r i, and

it is ergodic. 'Ibc application of L ittle's I aw in this c'vse is just an academic exercise since

the najority of u sclil information has already becen conveyed by the fact that 1, 0 ,or

ii>in. We note that if w, 0 for n>in. then the N processor sytetn is really indepen-

dent subsystems.

t I kcrc Vj nicins ksc tiniu or eqtual ctcmncuu-wmsc.

.04~~ ..NN % .
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Since each of these simple stibsystelms is closed. the time averages must he finite. [urther-

more, due to the extrcmely simple structure and ihe stationarity of the prohahility distribu-

tions, the time averags cannot hitl to exist due to periodicities. T'heefbrce. de Lime averages

I)r each subsystem must exist. And since all the suhsystems are iodependent, we conclude

that de time averages for the entire system must exist.

We assume in the iollowing that we do not have -0 for every n>n for sni)e >0. r

Cast 1: 'le Markov process { 1',, satisfies Ilypothesis I) of l)oob Ip.192 or Ref. I)1 which

roughly stated is the following:
- d

Ilypotlmhesis I) .-

lliere is a probability assignment or sets A C RN. an integer v> 1. and a positive ., such that

S/I) _I -e if l'r(A )5e.

(A more precise statement in terms of IWOrel sets and measures is given by I)ooh). ibhis

hypothesis basically says that if I'r(A ) is small then p(v)(?,A ) is uniformly hounded away

from I. In particular this .means that Il,} cannot be priodic since then pIJC( .. ,,) 1 for

all v> I and mt>n. If a density fuinction po(7i) exists (i.e. p,(j)W. O. f 1 1.

and p(M.A ) fp,(7,)diJ ) and is bounded, then Hypothesis I) is stisied [Ref. DI), p.1931.
A

"11is condition is somewhat stronger than Hypothesis I) and excludes impulses in p( 7 . )

(i.e. discontinuities in p(7,A )). Hypothesis I) does not exclude diSCnutiniciQs in i(t, ) as (e

long as p(lA )< I for all 1, and all A for which Pr(A ) is small. %

Now since we (casionally have i % for it > i for some in (by assumption), all N subsystems

must communicate. hence 17 consists of a single communicating class (or ergodic set, as

I)oob calls it). l)oobs Theorem 5.7 [Ref. )I, p.2141 then asserts dht under I I)pothesis I)

there exists a unique stationary prohability distribution 11 7, independent of' 1 0 . This

implies that a stllionary prot)ahiity distribution exists for t,, i.e. lit i'r(i/ <y ) exists.

Furthermore, I)oh's Theorem 2.1 [Ref. )I, p.4651 (see also Theorem 6.1 and its proof on

p.219) asserts that i/ -- lim ±.5

All the time aerages necessary for any application of I.ilthk's law to the queuci'lg system.,

described by the Markov pro'cs { } i, c.n he derived from this Mairko\ proess. Any p.trtic-

lar timel iv erie, l ' inIe cst c.n he expre',sed as the time derige o(i' mmi rnd(nlo %,riahle

which is a deternin ktic fiuction I' .of i, .and i,,. Ioi example, it' ,, icprscnLs the

= 
'. a5

-O N 
.'

.. ... ~~~ 
% . . . . .

.
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interval betwecn the arrival of the i t h and the n i ]h request to be served in the

(;/(G/I//N system, then the time average reciprocal of the arrival r ; (if it exists) is

lim - ai where a, minl(q,, .1. As another example, if it iepresents the number

of requests in the G/G/I//N quetle waiting for service when the it"' begins service. then

the time average queue length (if it exists) is lir t/, whcrc n, is computed in a
n-*00Il_

straightforward manner from . Since the Markov proce~s {'n has a unique stationary

probability distribution and l, and Ip have stitionary prohability distributions, any random ..%

variable which is a deterministic fIunction of these quantities will also have a slafionary pro-

bability distribution. I)oob's Theorem 2.1 IRef I)1, p.4651 then implies that the time average

of such a random variable exists (since it must equal its meian, which exists since a stationary

probability distribution exist%).

Case 2: The Markov process 1., I is periodic.

I .eninia .

The Markov process {.e,, I is periodic if and only if t,, and Ip iae dterministic randoui vari-

ables - i.e. constants for all __0..

,Proof: "' -

Tlhe "if" part: If t. and I. are deterministic random variables, then by Theorein

2.1 I% is a constant tor it>3N where N is the number of processors. Now t.,.

1,. and ip, cotustan i s for ii>3N implies that {3, } is periodic with period at most -.

N .

The "only if" part: Suppose that . was periodic and i%, and 1n were not both

deterministic random -arlahles. Consider some state 7,, of the periodic portion of

the sequence { hu,, t. lhen the next state depends (i Ion .n(I ad Ilut because - } .

is periodic. this next sLite, ,1 is already known with probability 1. Since ,a

and are not both deterministic random variables (and since both arc stationary p.

random variableS), there is some positive probability of the sum 1, ,, being

such that som: CleImenit inl the ordered list obtained via the f( ) operation is

Nolc thal lhc,.e time avcragcs ai . r'C, cret,1 P but cqu valcrll to thosc ini the si a mlmc t iii ol I ildc's, laiw in
section 2.3 if licy exist.

.. '?

.%% . % . % . % ". . • . . . . . . . .. . ... . . ,* . . .
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different from that in the known next SLlte. '11is contradict% ihe hypothesis that

I7i,, ) is periodic.

Corollary 11.1

If he Markov process 1., 1 is periodic. then

I. IWR is a constant for n>m for m>0 largc enough and thus lin Ir(fw.<j') exists
n -*00

i.e. a stationary probability distribution exists for t .

I "A
a! - 00 iii.n

3. the limc averages necessary for any application of Iittle's ILaw to de quCucing sys-

tern described by {I-,I exist.

Proor:

Points I and 2 fbllow immediatcly from I .cmmi I. and Theorem 2.1. Since the

Markov process [i', is periodic. any time average derived from 17, } is equal to

dte sane average over one period of [{. .Since by hypothesis the pcricd of .

{1, } is finite, all possible averages derived ['1,1M {Y, must exist and hence all

possible time averages derived from [{J nu'Ist also (.xist. Point 3 now follows

since tlhe set of time averages necessary for any apl)lication o Li.itlc's .aw to the

qLeueiLng systlem described by {5,, I is a suhst,, of all possible timae aerages ,-

derived from {1 ,.

Remhark:

The above three cascs are not necessarily exhaustive.

.p

...'. p

% . ' "G" %3, " "."..G '.,''_',''..''.''. '.""b ',,'.-' .\''.." ."". ". "" "'.-".-''..'. "'.''.*'*.''. , " "" "'¢ " .- ,-"- -"" " . ,'-' " , S". ,



296 Aplpiedix II

"llworeii 2.2

('onrsider (he qucucinl' model described in ,ection 2.1 with stat i ar>li ptcessing and access

timle di.StrIbutions with means i, <00 and I, <00 respectively and subje, it) tile assumptions in

section 2.3. Then w(N t I) w(N )<i, where w(N) denotcs the meaa wiiting time in a N pro- p

cessor molel.

Iroof:

The N processor model is a G/G/I//N qucucing system as decribed in section 2.1.

I.ct the processing and access time distributions of this C/G/I I/N s)stem be dcnoted

by I"1 (x ) and F .(x) iespctively. 'lhc N 4I processor model is a G/G/I//N-+I

quetueing system wilh the sam e processing and access time distributions -I (x ) and

I'r. ) respectively - as for the C/(;/I//N system. In the remainder of the proof the

G/C;/I//N system and the G/G/I//N + I system are referred to as the G/G/I//N/1

systnem and the GIG/ I//N + I/P system respectively to emphasit.e the special relation-

ship between the two systems. The additional P denotes "pair".

I.et the state of the (il/I//N system at time t be described by:

X(i ,N ) -i , ,p 1,p2.... l, . -

where N denotes the numher of p~rocessor%. n indicate. the numher of requcs.

queued for service and presently in service, x is the residual access limo, and lp,

I<i <N. is the residua! prneesing time at processor i.

It is not necessary to include I,, in the state description when processor i is not pro-
cessing - i.e. when procesor i is waiting for a request to complete: indced, ip, has no

meaning in this case. I lowever, we choose to include i in the slate ilr this type of

si wation for notational convenience (i.e. so we can always write X(W..NV) in the same

way independent of which processors are processing). 'lI ensure Lha;. 1p, is alwAys well N"

defined, we let p, -0 when processor i is not processing. The aiiaiogotus situation

ocLur with x when there e 1no outstanding requests. In the Ihllowing we refer to the "

N-tupc I,. ,,, - .i,,v by thie "ector -

Simila il, let the s!ate of the C/CGI//N + I/P system al time /' be des.ribcd by

'(I.N + 1) -(IxII, ,,.Ip. ). [l'he inlcrpretation of each quantily in this late

decription ic the n,me .,s l'ar the G/(I/ I/N/P system.

% % %

%~~~~~~~%' -. b-.%' -i . - -
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The proof is based on an argument that the behaviour of a C/C II/IN/I' system with

n requests queued fir and in service and the behaviour of a (,'(;/I//N + I/P system

nt -i I requests quelued for and in seri'cc are probAhilitiU.ially identical. "Il e deiils of P%

thc argumcnt are as follows.

Consider a state X(t,N) (t.xj-). For some t' and it>]. there exists ite

X(i',N + 1) -(i + l~x', where x' x and ) Pp, , 0. silice te

G/G/I//N +I processor system is idcntical to the G//Il//N system aside from an

extra processor. In l.ct, for each ,i>I and for each s te X(i,N) (n ,.x,/), there

exists a corresponding state X(I',N / I)--(n i lx',I') t r some t' with x' -- and

' P ' P * I PN i

The suite X(i',N /- I) (it, l,.% ,(itO)) difl'crs from the suite X(,N) (n,x,tF7) (aside '".,

from the possible difference in times i and i') only in that there is one more request in

die queuie. flut fbr ii > I. this additional request in the qutLe cannot he receiving ser- A

vice (without loss of generality we can consider the additional request to be the last

request in the queue). [urthermore, the processing times at each processor and the

access time of each request are indepcndent of each other and everything else in tile

system including the Idditional request in the queue. Therefore, [or in >, the system

operation cannot depend ()i the fact that theic is an additional request in the queue.

Thus, for n>l, the probabilistic behaviour in states X(i.N) s-(n xt) and

X(I',N !-I) - (n i l,x.(i,,,O)) must be identical. Since given any state Xl'.N)-(n'x.1)-

with ni>i, there exists somc state X(i',N + 1) --(n + I.x.(tp.O)) and since these two

states must have the same probabilistic behaviour, the G/G/I//N/P and the

G/G/I//N + i/P systems have the same probabilistic behaviour, as long as 11 > 1. In

particular, if one request in the queue of the G/G/I//N + I/1 system was hidden from

view, ain observer would be unable to distinguish die /G/Il//N/IP queneing system.,

from de G/C/I//N + I/1) systetn so long as t > 1.

We now introduce some notation. Let 7r N denote ie tition of ttle that the

N 7G/G/I//N/P s)stem has i requests in the queue and in serice. let iq denote the

tine average of the numblr of requests queued for but not in service in the

G/G/I//N/I' system. Finally, let pN denote the fraction of time that the server is

busy. We have

N NN .i-|)/1/V l N  Z ,N  + "

A'2 I %1

I.ct, i.q N Mtid ,V he tie .mailogous quantities for the (I/(I/I//N I 1l1 sys-

1i1I. % %

"~~~ % V" " %' ,,, ",- , ""'"" "e"r'"" , , ."' . . .. . . . . . . . . . ."''
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Lemma 11.2 V

rmor: (Wifoi>

As argued earlier, the GIG/I//N/P system with i rcquests in the queue is probabilisti-

cally identical to the G/G/I/N + 1/11' systcm with i + I requests in tile queue and in

service if I> 1. It follows that v,4 .,N =fw! or some constant C.

Proceeding with the proof of Ehecorem 2.2, there are two cases to consider.

Case 1: i(N)z-O

Lemma 1.3

Ifw*(N)=O then ,N.I -0 for i>2.

Prool:

If ii(N)=O, then v/N= 0 for i> 1. it follows from ILeinina 11.2 that w/N +1 O for i>2.

TIhus in case I 1 f h ,+ =Pi FNt<N.I Irom little's Law we have

N+1-

Case 2: iw(N)>O
-NN -

If Fv(N)>0. then rN> or somne i>I. Bly ILittic's Law we have i;(N)=--- and

-- 
1 q /a -w (N +1)=-Nt

p

N+I Nil- N ~ N N

an p 91 + Ywv Combining these two relations with Lcmr-na 11.2

-N~l N N-ti N II
(flqik + P 77jf

'[herefobre

N IIj ,N( N V I N(Cp p

i-v( + 1 w( ia I NA,
-p p p p

%~ #. %% . I
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Applying ILcmma 11.2 again yiclds pN ,I= V -t I I ±"Ne= ls N I -pN

finally,

a.

N N*1 N+I

Fv(N 1) --F(N) +- i

p .p ID

-S

7.

7')
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'leorem 2.4
Lct 1" ab(s) denote the l.aplace transform of die probability density fi ction fl (x)

with mean k where J'ab(x)=:O for x q Ia.b]: O<a and b<2a. Let '(s)MAM,IN

dcnote the I aplacc transform of the exponential density function with the same mean

.. Thcn F°(s)MMAIN I ab(s) for s real and s>O.

Proof b

We are to show that I"(s)MMq,,N =--- -- >"ab(s)=:s+ fe -fab(x)dx for s real
sk+1 -a

b

and s>O whcre . =fxf,b(x)dx. This is equivalent to showing that e<1 where
a

e=(I +si)fe-"fal(x)dx. We note that e and all its derivatives with respect to s
a

exist and are continuous in s. In addition we note that e= 1 at s=0. It thus suffices to

ae
show that -<0 for s>0.

as-

a b b
= Xf e-,"fab(x)dx -(1I + &) -j Xe fab(x)dx

a a

ae
as =0%

2 -24b xet --f,,lx~x + (I+ +S)f x e -sxfab(X)d xas a a

ale b b
Now --<(-2 .+(I /si)b)f xe-sxfab(x)dx. Since fxe-sfab(x)dr>O and

a a

-21+ (I +sX)b<0 for s real and s<. - we must have

ale -- b~f,,',aa. 22i-b<0 for O<s <-. ,
a2s b!

implying that 50 for 0<s <
as hi

Furthermore. a<(- ( b1seafe-fbXX
a

b ' -
Since fe-'fab(x)dx>9 for s real and . --(! +s.)a<O for s> ,

a a,

%*I~

Q' w
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we must have -t <0 for s>- .
as ax

'a 2YW-b
Iut O<b<2a implies 9b --ab<2a. -ab which implies---< 2-

'lcreforc ae<0 for s>O.
as -

.4

- €!

'4

9m
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"lhcorem 3.1

Preamble:

Consider the following two state descriptions of a Ringbus with S slices, request probabilities

pi, i = -(S/ 2- 1). - •, - 1, 0, 1, -". . S/ 2, and subject to the assumptions in chapter 3:

State description A: (r1.dj:r2.d2: "". :rs,ds)

State description It: (r1 ,w,dl:r2 w 2,d2; ... ;r,,.ws,ds)

ri and di denote the request at slice i and the duration of the grant at slice i, as discussed in sec-

tion 3.2.1. wi denotes the interval for which the request at slice i has waited so far without being

granted. We adopt the convention that wi =0 whenever di *0. 'lhe arbitration problem relative to

state description A is to find a policy I)A which maximizes the throughput g I
DA given by 60%

r ) W(r.(r 4); .

where

(r,d) denotes a particular state (using vector notation),

d(rd) is the decision in state Q,4),
q( I )) is the reward in state (rd) under decision d(rd),
.d(rd

P/,.d. r'.) is the one step transition probability from state (r,d) to state (r',d') under deci-

sion dr.d), and

W(rd) is the steady-state probability of being in state Cd) under policy i)A .

'Thc arbitration problem relative to state description I is to find a policy I)A which maximizes the

throughput gl) given by

1 Ie q. d(rw d) I)
-( /(r.w. d) W(rw4)

where ,

(Cw!,d) denotes a particular state (using vector notation).

d(r.w,d) is the decision in state Cr.,w,d),
,d(r.wd "
d(r.w.d) is the reward in state (rdv,d) under decision d(r,,..

'(r*,. d) IS).a'/ is the one step transition probability from suite (,w,d) to state (rw',d!) ,'

under decision d,w__,d), and %

i(r wA) is the steady-state probability of being in state (rw._,) under policy )Ri.

W p -1

%.
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Note Jiht if(r',w",d') is [he immediate successor of sonic suite (r.w.d) then v'/ -0 if request~d(r w d)
ri was granted and w' z- w, i I otherwise. ,Thus p(r.wJXr'.d') - 0 if for any i cithcr a) rcquest ri

is granted and w', *0. or b) request ri is not granted and w i * wi + I. 'lis can be expresscd nore
dtr w d).... .

concisely as p(r.X. ) -0 i,(r wd) W((r,w._)) where (r'.w'.d/)C H'((r.w.d)) ir for each

i= -(S/2- I)..... -1. 0, 1., S/2 either wi'=0 if request ri is granted or i-,' w, f I if

request ri is not granted.

Statement:

Let Or be any optimum policy for the arbitration problem relative to state dec-ription A. .,

'lhcn, if thcre is no tipper bound constraint on the waiting times wi, an optimum stationamy policy

)r" for the arbitration problem relahive to suite dcscription II is the following policy I);:

Choose d (r..d) in each state (r.wd) such that d'(,.w.)-2dOP(rd) for all it. P

Consequently

P wJ d for all w and all w' such (hat(r',w'.d')E I1'((r.w.d))
d (r~l

P(r~wJ~r1).w') 10 otherwise

and

qd'(r *.d) dOr' (r.d)
q(r.w') q(,) r all w.

I)r' 1)
Furthermore, g Z-g . IThus tle waiting time inltirmation n is irreleva,: hn det.rinining the

optiiuim throughput.

Proof:

For the arbitration problem relative to stitc description A. let W'(r.d) denote the aliue of

being in state r ,d) tinder policy ),'7 and let v1 denote the value of being in state 1=(0.0).
Then from equation 3.6 we have

g 1,r 1) 4V , (r.d) 1 P ( tr..) 1q.
-'l I~d 6',,rd " d') 11

F+or the arbitration problem relative to state description It, let Jtr...d)() denote the optimal -

expected total reward accumulated over ii rounds if the prcss started in state (!,w,di with termi-

nal reward Th(rwd)(). (hen from equation 3.16 ,e hav.e

iV(,.,.,.d~t 1(" I) = ,,a.( •~ s I/ "'" ' t '-JO(r': ,, d) \'J(r wv d)
d~. ,r' '.'w r'd)' '((r) " .

,l~t.+_ q) ('.-'J') +. 1

• **:e
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maxi qd*7)4 ) + I Pdr.~~w .d V(,W'4 (l)

Wr.W.d')

+ lw~)z*na Q.Y.4) + ~ ''
d(r(w.d')E W((r~w~d)

max( * + w (r.n.a r.w'.d) V(r'.w'.J')(n)

Let die terminal rewards be V,,.w)(O). Yi, vj for every (j.w1)y Te

Iw +rd)71 'llic

(r~~~w.. ) '.w .d')(V(r .d')- )
d -r,.d)*d (r.wvd) r.W'.d')

Now every decision d~~~)in state (.d)is thc same as Some decision d(r~d) in state (r.4).

Ihs IrJ)r)(rrw)a~j~frsm .. d~r' d'') =Pgr..h(r'.d') rid~(rv~i) _ .ru ~r.4) for every d(r~w~d) for

eey sae(~.) iC IAP s optimal policy.

( drX,.d)(~ d ' q(r.d LVr )

for every d(r.d) and thus 
,~

.d')- ) qd(D*. or P(r.,~.W ~ ')AV1 (r.Wd~ +.W d)

for every dtr.wv.d) and every state (r.w.d). 'I'hcrefore i/(rwdJ)): f- 1)7' - 1)7 I or cvery

state Tbi~.) UlS the polIiCv 1); is an1 optimal stationary policy. It follows that g) -g

dA~ d); I) d-Od o llwadj4.

U~nder policy DI;. q~r~w~d) c q~~d) o l n 2.rwdff'r4) Th1us

D;; d(,- . d) 1)7"1)7

(r~wd) (rd) w (r~d)

'Ibcrefore g g SO

or.

1116111 .0 %%
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